

ZW1528: A Dual-Targeting Bispecific Antibody to Broadly Suppress Airway Inflammation by Inhibiting IL-4Ra and IL-33 Pathways

Alexey Berezhnoy
Director of Immunology

Blair Hardman, Purva Bhojane, Robert Nechanitzky, Omar Kassas, Veronica Luu, Janessa Li, Yunfan Lyu, Tristan Philip, Kesha Patel, Andrew Sharon, Catherine Wu, Nichole Escalante, Michelle Chakraborti, Kurt Stahl, Steve Booth, Charles Chen, Paul Moore, Thomas Spreter von Kreudenstein

Azymetric[™] – Adaptable to Different Formats and Applications

Engineering

Set of transferable mutations supporting pure and stable Fc heterodimer formation with exclusive chain pairing during co-expression

Libraries of constant domain Fab mutations available for kappa/kappa, kappa/lamda and lambda/lambda bispecific LC combinations

Flexibility

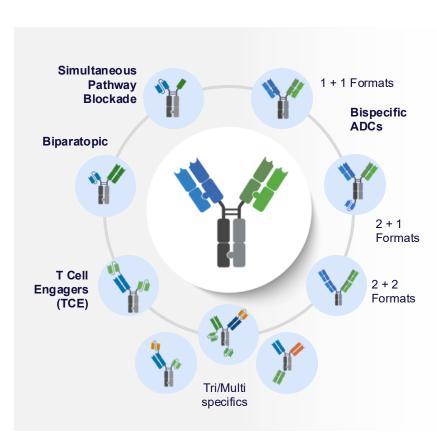
Can employ novel or existing antibody paratopes; human (IgG1, IgG2A, IgG4) and mouse frameworks; other CH2 and glyco-engineering approaches (eg YTE). Compatible with linker/payload conjugation

High-throughput Screening

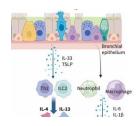
Best-in-class activity requires screening of alternative targets, epitopes, sequences, target engagement geometries, and mechanisms of action (blocking, lytic, ADC)

Highly Manufacturable

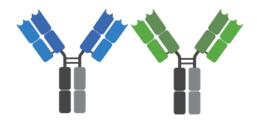
Antibody like yields/stability; leveraged by multiple pharma/biotech with various clinical stage programs in development



Differentiated Development of Multifunctional Therapeutics


Program	Technology	Target	Indication	Discovery	Preclinical	Phase 1	Phase 2	Phase 3
Solid Tumor Oncology: Antibo	dy-Drug Conjugates (ADC)						
ZW191 Topo1i ADC DAR 8 Fc WT	ZD06519 Payload	FRα	Gynecological Thoracic	NCT065557	44			
ZW220 Topo1i ADC DAR 4 Fc Mut	ZD06519 Payload	NaPi2b	Gynecological Thoracic					
ZW251 Topo1i ADC DAR 4 Fc WT	ZD06519 Payload	GPC3	Digestive System (HCC)			Phase 1	study planned t	to initiate in 2025
Solid Tumor Oncology: Multisp	pecific Antibody Thera	peutics (MSAT)						
Zanidatamab Bispecific	Azymetric™	HER2	Multiple indications	Developmen	t partners: Jazz	Pharmaceutic	als and BeOne	
ZW209 Trispecific TCE Tri-TCE Costim	Azymetric™ Novel anti-CD3 Conditional CD28	DLL3 x CD3 x CD28	Thoracic			Anticip	pated IND 1H 202	6
ZW239 Trispecific TCE Tri-TCE Costim	Azymetric [™] Novel anti-CD3 Conditional CD28	CLDN18.2 x CD3 x CD28	Digestive System					
Autoimmune & Inflammatory D	liseases							
ZW1528 Dual Cytokine Blocker	Azymetric™ Hetero-Fab YTE	IL4Rα x IL-33				Anticipated IN	D 2H 2026	
ZW1572 Dual Cytokine Blocker	Azymetric [™] Hetero-Fab YTE	IL4Rα x IL-31						

Bispecific Antibody Therapeutics as the Answer to Complex Biology of Autoimmune and Inflammatory Diseases

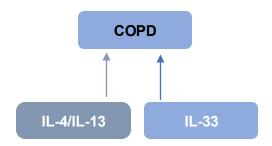

Patients

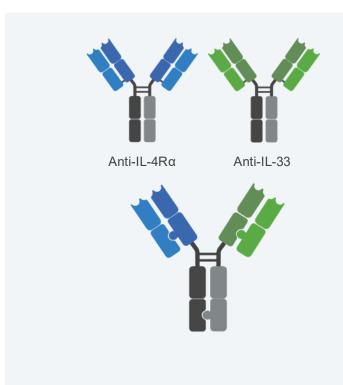
- Serious, difficult to treat diseases
- Large patient population
- Restricted access to advanced therapeutics

Clinical science

- + Clinically validated targets
- + Benefits of combination
- Inconvenience and cost of clinical implementation

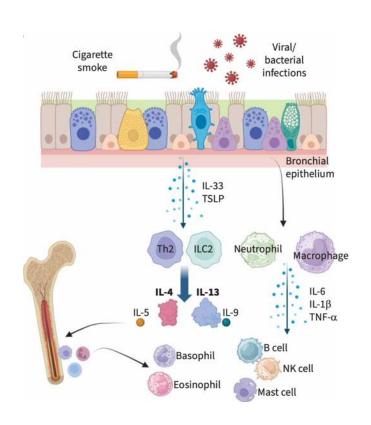
Technology


- + Clinically validated platform
- + Compatibility with Fc modifications (HLE)
- + High efficacy, convenient, costeffective solution

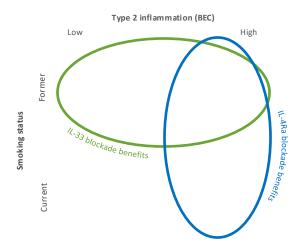


Rationale for anti-IL-4Rα as an Anchor Arm

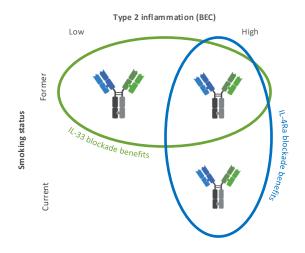
- Dupixent®/dupilumab is a highly successful mAb targeting IL-4Rα
 - Approved for multiple atopic and inflammatory diseases
- Blocking IL-4Rα inhibits both IL-4 and IL-13 signaling
 - Two key cytokines responsible for driving Type II inflammation
- Multiple cytokines drive pathology of respiratory inflammation
 - Add inhibition of an additional inflammatory pathway to augment or improve on monotherapy effects
 - ZYME opportunity to develop more efficacious molecules



IL-33 as a Bispecific Arm in COPD and other Respiratory Diseases

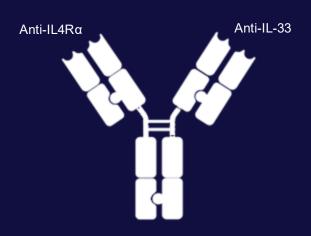

- IL-33 is a tissue alarmin released in response to epithelial damage
 - Acts on a range of cells e.g., neutrophils, Th2 cells, eosinophils, and mast cells
- Initiates and amplifies inflammatory response / perpetuates chronic immune response
 - May also drive tissue remodelling in chronic inflammatory diseases e.g., COPD and asthma
- Clinical proof-of-concept for targeting IL-33
 - For former smokers with COPD, and in asthma
 - Phase III trials underway for anti-IL-33 mAbs itepekimab [Regeneron / Sanofi] and tozorakimab [AstraZeneca]

IL-4Rα x IL-33 Bispecific Provides Opportunity to Treat Broader Set of COPD Patients with Single Molecule


Anti-IL4Rα and anti-IL-33 therapeutics are being developed to treat different COPD populations

Anti-IL4Ra effective in Type 2 COPD (those with eosinophilia)

Anti-IL-33 may prove to be effective in former smokers


IL-4Rα x IL-33 bispecific provides opportunity to treat broader set of COPD patients with single molecule

IL-4Rα x IL-33 bispecific to combine the effects of two mAbs

Potential for increased efficacy in monotherapyresponsive patients

ZW1528 IL-4Rα x IL-33 Bispecific

IqG4 YTE

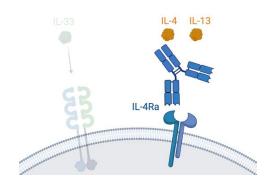
Inhibits Multiple Pathways within Complex Pathophysiology of Inflammation

Design

- Native IgG-like geometry; highly manufacturable, compatible with half-life extending Fc modifications
- Clinically-validated targets
- Core arm mediates complete, prolonged IL-4Rα blockade. Second arm adds inhibition of IL-33, an upstream cytokine involved in perpetuating chronic inflammation.

Mechanism

- Inhibition of 3 cytokines in single asset
- Potential advantages of local retention


Profile

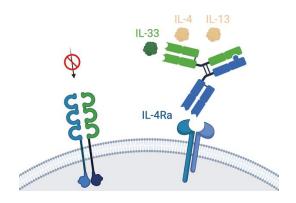
ZW1528 potently blocks two complementary pathways of respiratory inflammation

ZW1528 Design and Proposed Mechanism of Action



Dupilumab blocks IL-4Ra

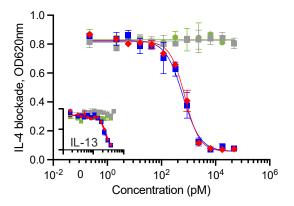
Type 2 inflammation suppression Approved in asthma, COPD


Itepekimab/tozorakimab block IL-33

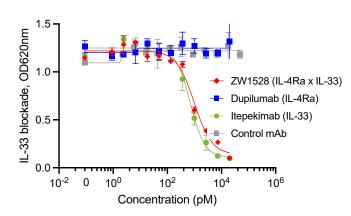
Type 2 and non-T2 inflammation suppression. Improved tissue remodelling.

Ph3 studies in COPD

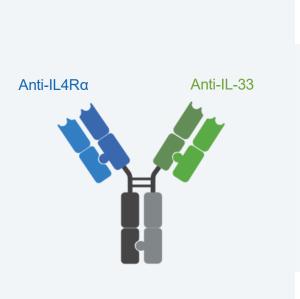
Dual blockade by ZW1528

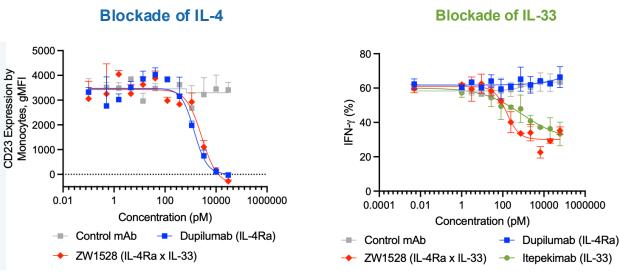

- Aim at complete, prolonged blockade of IL-4Rα
- Utilize potential advantages of local retention
- Take advantage of IgG-like geometry (PK, CMC)

ZW1528 Effectively Blocks both IL-4/13 and IL-33 Signaling



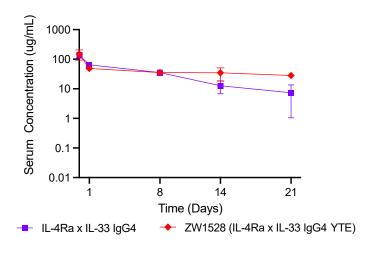
Blockade of IL-4/13


Blockade of IL-33

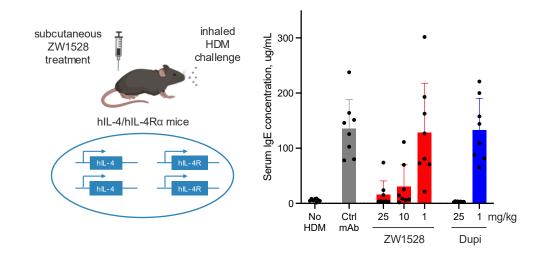


- Potency of ZW1528 similar to the _bivalent_ benchmark mAbs
- ZW1528 blocks both targets

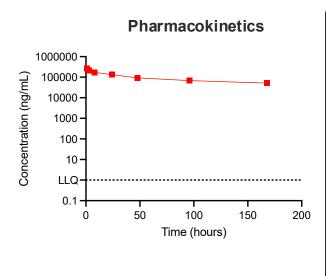
ZW1528 Blocks Two Complementary Pathways of Airway Inflammation in Primary Cells of COPD Patients

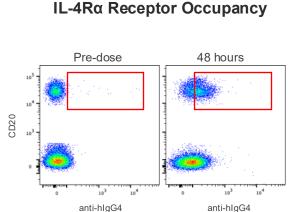


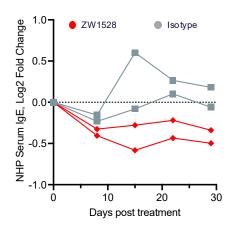
- ZW1528 effectively blocks IL-4Ra and IL-33 in PBMC of _COPD patients_ in vitro
- Enhanced blockade of IL-33 axis


ZW1528 Demonstrates IgG-like PK and Blocks IL-4Rα in vivo

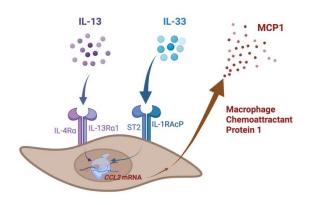
Half-life extension (Tg32 mice PK)




Suppression of IgE after inhaled allergen challenge

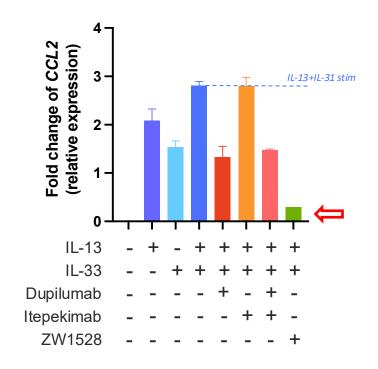

ZW1528 Demonstrates Biomarkers of IL-4Rα/IL-33 Blockade in NHP

Reduction of Serum IgE


- IgG-like pharmacokinetics in non-human primates (NHP)
- Biomarkers of IL-4Rα/IL-33 blockade up to 6 weeks after single administration

Cynomolgus monkey (N=2) were dosed with ZW1528 i.v. at 10 mg/kg

ZW1528-mediated Blockade of Primary Cell Activation is Superior to Dupilumab and Itepekimab



IL-33 and IL-13 activate human epithelial cells

- IL-13 and IL-33 treatment induces disease-relevant genes in primary cells
- ZW1528-mediated blockade is superior to dupilumab, itepekimab and combo

ZW1528 blocks activation

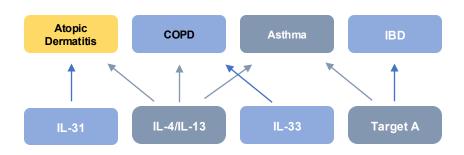
Summary: ZW1528, an IL-4Rα x IL-33 Bispecific Antibody has the Potential to be a Significant New Treatment Option for Patients with COPD

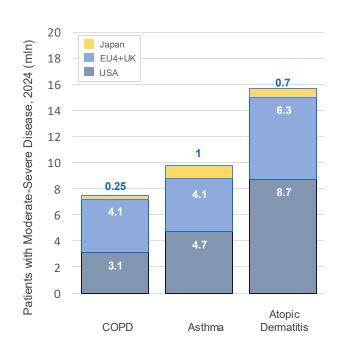
ZW1528 potently blocks two complementary pathways of respiratory inflammation

dual blockade of IL-4Ra and IL-33, preliminary evidence of bispecific advantage

ZW1528 demonstrates favourable profile in vivo

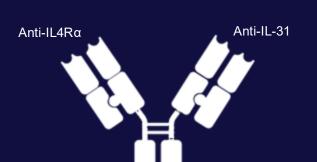
good tolerability and PD of target blockade in NHP, extended PK in FcRn-humanized mice


ZW1528 aligns with requirements for successful AllD therapeutics


easy-to-manufacture IgG-like molecule, designed to allow subcutaneous administration and less frequent dosing

Multiple Therapeutic Programs Using Validated IL-4Rα Blocker

Program	Target Pair	Target Validation				
ZW1528 (2026 IND/CTA)	IL4Rα x IL-33	Anti-IL4Rα approved in COPD Anti-IL33 in pivotal COPD phase 3 studies				
ZW1572 (PCD ready)	IL4Rα x IL-31	Anti-IL4Rα approved in Atopic Dermatitis Anti-IL-31 validated clinically for itch control				
Earlier stage asset IL4Rα x Target A		Anti-IL4Rα approved in Asthma Target A efficacious in multiple AIIDs				



Atopic Dermatitis: DalaMonitor Epidemiology. Abopic Dormatits (May 2024); DalaMonitor Palent-Based Forecast Model: Atopic Dormatits (Dec 2022) Asthma: DalaMonitor Epidemiology. Asthma: (Spa 2023); DalaMonitor Palent-Based Forecast Model: Asthma: DalaMonitor Epidemiology. Asthma: (Spa 2023); DalaMonitor Palent-Based Forecast Model: COPD (Dec 2021); Evaluate Pharma Indication Sales Forecast (Lan 2024); Life Epidemiology forecast Model: COPD (Dec 2021); Evaluate Pharma Indication Sales Forecast (Lan 2024); Life Epidemiology forecast COPD: The Loanor COPD (Dec 2021); Evaluate Pharma Indication Sales Forecast Plan 2024; Life Epidemiology forecast COPD: The Loanor COPD (Dec 2024); Life Epidemiology forecast Plan 2024; Life Epidemiology forecast COPD: The Loanor COPD (Dec 2024); Life Epidemiology forecast Plan 2024; Life Epidemiology forecast COPD (Dec 2024); Life Epidemiology forecast COPD (Dec

Real-World Data Epidemiological (CORE) Study. Int J Chron O bstruct Pulmon Dis. 2024;19:1011-1019doi:10.2147/COPD.S450270

IgG4 YTE

ZW1572 IL-4Rα x IL-31 Bispecific

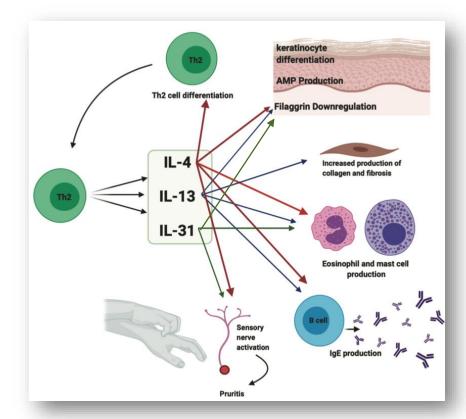
Inhibits Multiple Pathways within Complex Pathophysiology of Inflammation

Design

- Native IgG-like geometry; highly manufacturable, compatible with half-life extending Fc modifications
- Clinically-validated targets
- Core arm mediates complete, prolonged IL-4Rα blockade. Second arm adds inhibition of IL-31, a main driver of itch in atopic dermatitis.

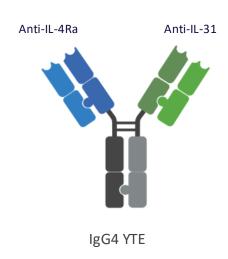
Mechanism

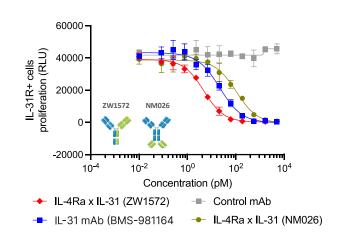
- Inhibition of 3 cytokines in single asset
- Potential advantages of local retention


Profile

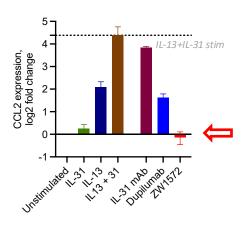
ZW1572 potently blocks two complementary pathways of inflammation

IL-4, IL-13 and IL-31 Act Synergistically in Atopic Dermatitis to Drive Inflammation, Pruritis and Skin Barrier Defects


- IL-4 promotes differentiation of naïve T cells to Th2 cells
- IL-4 and IL-13 maintain the Th2 response
 - Drive recruitment of eosinophils and mast cells
 - Stimulate B cells to make IgE
 - Inhibit production of barrier proteins e.g., filaggrin, and promote keratinocyte hyperplasia
- IL-31 drives eosinophil and mast cell production, plus
 - Impairs keratinocyte differentiation & production of filaggrin
 - Activates keratinocytes to produce cytokines that amplify skin inflammation and itch
 - Acts on sensory nerves and contributes to pruritis / itch
- Several genes are regulated by IL-4/IL-13 and IL-31 in an additive or synergistic manner

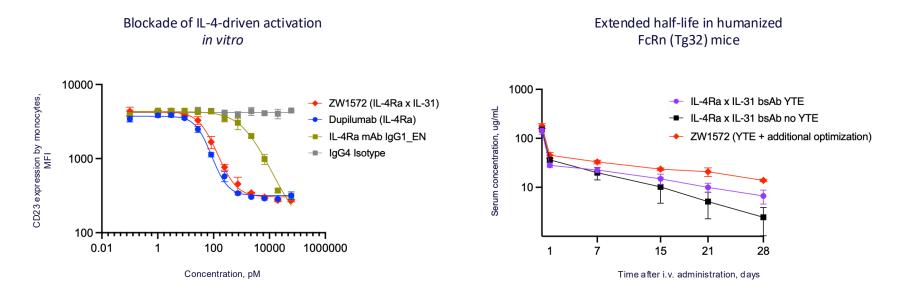

Sources: Dubin, C., Del Duca, E., & Guttman-Yassky, E. (2021). Expert Review of Clinical Immunology, 17(8), 835–852. Cornelissen, C et al, J Allergy Clin Immunol 2012;129:426-3

ZW1572: Bispecific Inhibitor of IL-4Ra and IL-31 for Atopic Dermatitis



Enhanced blockade of IL-31

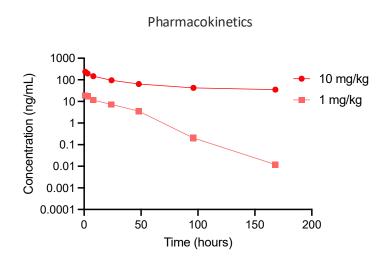
Suppression of CCL2 induction in keratinocytes

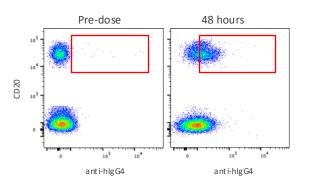


Superior IL-31 blockade vs (bivalent) clinical benchmarks

Superior potency vs individual mAbs in primary cells

Optimized Fc Portion Enhances IL-4Ra Pathway Blockade and Pharmacokinetics of ZW1572




- Azymetric[™] Fc platform is compatible with lgG4 Fc isotype and YTE mutations
- Selected Fc isotype/modifications demonstrate favorable profile in vitro and in vivo
 - superior target blockade compared to unmodified effector-negative IgG1
 - superior PK relative to unmodified IgG4

ZW1572 Demonstrates Antibody-like PK and RO in NHP

IL-4Rα Receptor Occupancy

• IgG-like pharmacokinetics and biomarkers of IL-4Rα blockade in non-human primates (NHP)

Cynomolgus monkey (N=2) were dosed with ZW1572 i.v. at 10 or 1 mg/kg

Benefits of Bispecific Therapeutics for AIID Patients: Blockade of Multiple Cytokines by a Single Molecule for Patients Convenience and Better Outcomes

Opportunity to benefit patients with autoimmune and inflammatory diseases

- Blockade of complementary pathways of autoimmunity could enhance therapeutic benefits for patients with mixed-type disease
- Single therapeutic molecule could address multiple subsets of AIID, such as type 2 and non-type 2 driven inflammation
- Computationally-guided protein optimization enables low-volume subcutaneous administration and less frequent dosing