

# Leveraging Humanized Mouse Models to Support T-Cell Engager Development

Tumor Models Summit San Francisco

January 29, 2025

**Nichole Escalante, PhD** Senior Scientist and Group Lead in vivo Pharmacology and Pharmacokinetics

Nasdaq: ZYME | zymeworks.com

#### **T Cell Engagers for Cancer Immunotherapy**



- T cell Engagers (TCEs) are classically designed as bi-specific antibody-like proteins that simultaneously engage T cells and tumor cells leading to targeted tumor cell death
- Targeting of T cells through anti-CD3 arm leads to T cell recruitment and activation
- Targeting of tumor cells through anti - Tumor Associated Antigen (TAA) arm increases specificity of killing



#### **Accelerated Pace of T Cell Engager Approvals in Oncology**



zymeworks

## **TCEs are Rapidly Evolving in Format and Functionality**





Fenis, A., Demaria, O., Gauthier, L. et al. New immune cell engagers for cancer immunotherapy. Nat Rev Immunol 24, 471-486 (2024).

#### **Challenges Exist for TCEs in the Clinic**



- Dose limiting toxicities (CRS, neurotoxicity, on-target off tumor)
- Post-treatment relapse (PD-L1 upregulation, Treg increases, T cell exhaustion, Loss of TAA)
- Short serum half life of first generation of T cell engagers
- Poor efficacy in solid tumors (less penetration and T cell presence)





### Innovative Engineering of TCEs to Overcome Clinical Challenges





Zymeworks Data References: L Newhook, P Bhojane et al. SITC 2023. Poster#1372 L. Newhook, P. Bhojane et al. AACR 2023. Poster#5121.

# Engineering of TCEs Increases Complexity of *in vivo* Modeling





#### **Workflow For Preclinical Development of Multispecific TCEs**







# Why Humanized Mouse Models?







### Humanized in vivo Models for Evaluating TCE Anti-tumor Activity





PBMCs = Peripheral Blood Mononuclear Cells

### **Focus in: PBMC Humanized Models**

•

•

٠





Model Selection / Growth Kinetics

- Expression of TAA
- Indication of interest
- Previous use with humanized mice
- Evidence of activity with similar molecules



PBMC Donor Screen

Timeline for graft versus

Non-treatment PBMC vs

Responsiveness to positive

host disease

Tumor activity

control



Dose Range Finding Study

 Active dose ranges for our positive control or lead molecule



In vivo Anti-tumor Study

- Activity compared to controls and benchmarks
- Blood Pharmacokinetics
- Bodyweight loss
- Clinical health
- Pharmacodynamic analysis



#### **Focus in: PBMC Humanized Models**







# Case Study 1: Established PBMC Humanized Models can be used to Evaluate Activity of Trispecific TCEs with Co-stimulatory Function





#### Goal: Evaluate activity of TriTCE molecule compared to Bispecific or Clinical Benchmark



# CLDN18.2 Trispecific TCE (ZW239) has Enhanced Activity in an Established PBMC Model of Gastric Cancer



zymeworks

Zymeworks Data References: L Newhook, P Bhojane et al. SITC 2023. Poster#1372 L. Newhook, P. Bhojane et al. AACR 2023. Poster#5121.

### **Tolerability Concerns for TCEs**





#### Cytokine Release Syndrome



15

### *In vivo* Modeling of Cytokine Release Syndrome Risk



| In vivo Model                                                                                                                                                                | Features of CRS                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>PBMC Cytokine Release</b><br>High cytokine producing PBMCs<br>in immunocompromised mouse                                                                                  | <ul> <li>T cell cytokine response (human)</li> </ul>                                                                                                                         |
|                                                                                                                                                                              | X Myeloid cell activation and signal amplification from cytokines                                                                                                            |
|                                                                                                                                                                              | <ul> <li>X Non-immune cell response and activation by cytokines (e.g.<br/>Endothelial cells)</li> </ul>                                                                      |
| <b>CD34<sup>+</sup> Human w/ Cytokine</b><br>Human stem cells engrafted<br>in immunocompromised mouse<br>with human cytokines<br>(supports non-T cell immune<br>engraftment) | <ul> <li>T cell cytokine response (human)</li> <li>Myeloid cell activation and signal amplification from cytokines</li> </ul>                                                |
|                                                                                                                                                                              | <ul> <li>Myeloid cell activation and signal amplification from cytokines</li> <li>X Non-immune cell response and activation by cytokines (e.g. Endothelial cells)</li> </ul> |
| <b>Transgenic</b><br>Human protein expression<br>in immunocompetent mouse<br>(eg. Human CD3 & Human TAA)                                                                     | ✓ T cell cytokine response (mouse)                                                                                                                                           |
|                                                                                                                                                                              | <ul> <li>Myeloid cell activation and signal amplification from cytokines</li> </ul>                                                                                          |
|                                                                                                                                                                              | <ul> <li>Non-immune cell response and activation by cytokines (e.g.<br/>Endothelial cells)</li> </ul>                                                                        |



# Case Study 2: PBMC Humanized Cytokine Release Model can be used to Assess Risks of Human T Cell Activation



• Utilizes PBMCs pre-screened and identified as high cytokine producers



#### Goal: Evaluate T cell mediated tolerability risk of CD3 and CD28 engagement

Model References: A rapid, sensitive, and reproducible in vivo PBMC humanized murine model for determining therapeutic-related cytokine release syndrome. C. Ye et al. FASEB J. 2020 Aug 9;34(9):12963–12975.



#### **OKT3 and an Anti-CD28 Superagonist cause Bodyweight Loss and** Peripheral Cytokine Production but CLDN18.2 TriTCE Molecule Does Not





- CLDN18.2 Bispecific TCE
- Anti-CD28 Superagonist
- Anti-CD3 (OKT3)
- Vehicle

L Newhook, P Bhojane et al. SITC 2023. Poster#1372 L. Newhook, P. Bhojane et al. AACR 2023, Poster#5121,



### *In vivo* Modeling of Cytokine Release Syndrome Risk



| In vivo Model                                                                                                                                                                | Features of CRS                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>PBMC Cytokine Release</b><br>High cytokine producing PBMCs<br>in immunocompromised mouse                                                                                  | <ul> <li>T cell cytokine response (human)</li> <li>X Myeloid cell activation and signal amplification from cytokines</li> <li>X Non-immune cell response and activation by cytokines (e.g. Endothelial cells)</li> </ul> |
| <b>CD34<sup>+</sup> Human w/ Cytokine</b><br>Human stem cells engrafted<br>in immunocompromised mouse<br>with human cytokines<br>(supports non-T cell immune<br>engraftment) | <ul> <li>T cell cytokine response (human)</li> <li>Myeloid cell activation and signal amplification from cytokines</li> <li>X Non-immune cell response and activation by cytokines (e.g. Endothelial cells)</li> </ul>   |
| <b>Transgenic</b><br>Human protein expression<br>in immunocompetent mouse<br>(eg. Human CD3 & Human TAA)                                                                     | <ul> <li>T cell cytokine response (mouse)</li> <li>Myeloid cell activation and signal amplification from cytokines</li> <li>Non-immune cell response and activation by cytokines (e.g. Endothelial cells)</li> </ul>     |



# Case Study 3: Transgenic Models can be used to Assess CRS & On-target Off-tumor Activity Risk





**Tumor Cell** 

#### Goal: Assess PD-L1 & CD3 mediated tolerability risk of TriTCE Checkpoint Inhibitor molecules





#### **Tuning PD-1 Domain Affinity Improves Tolerability and Peripheral Cytokine** Release



Serum cytokines 24hrs post dosing



500



Zymeworks Data References: M. Verstraete, M. Poffenberger et al. SITC 2023. Poster#1395

### **Conclusions and Outstanding Challenges For TCE Screening**



#### **Conclusions:**

- Innovative engineering of TriTCEs increases the complexity of in vivo modelling
- · Humanized models can be used to evaluate efficacy and tolerability
- Each model has its limitations, and often multiple preclinical models are required

#### How to improve translatability?

- Testing primary patient derived tumor tissues (*ex-vivo*, *in vivo*)
- Use of more physiologically relevant models (e.g. Orthotopic, patient derived PBMCs)
- Comparing TCEs in combination with approved standard care



#### Thanks to the Zymeworks Multispecific Antibody Therapeutics Team







#### **Check Out Our Poster!**

**Title:** TriTCE Co-Stim: A next generation trispecific T cell engager platform with integrated CD28 co-stimulation to improve T cell function and antitumor responses in hard-to-treat cancers





