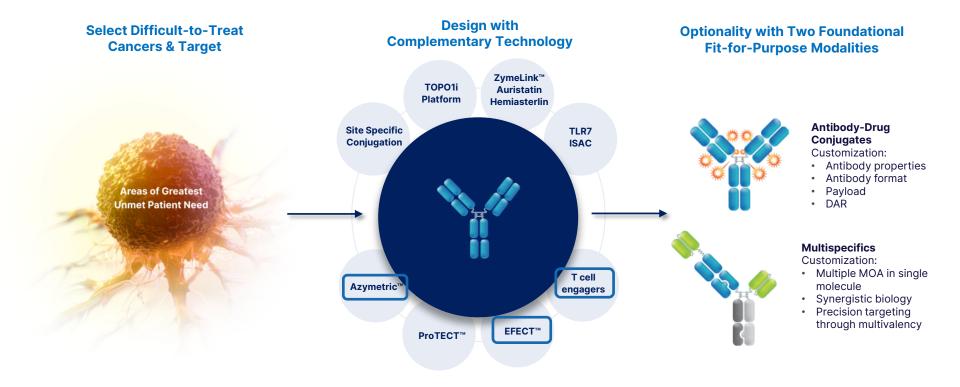


## Trispecific T Cell Engagers Incorporating Conditional CD28 Co-stimulation (TriTCE Co-stim) to Improve Treatment Responses in Oncology


PEGS Europe Protein & Antibody Engineering Summit November 5, 2024

**Nina Weisser, PhD** Director, Multispecific Antibody Therapeutics

Nasdaq: ZYME | zymeworks.com

#### ADC and Multispecific Modalities Driving Zymeworks' Pipeline





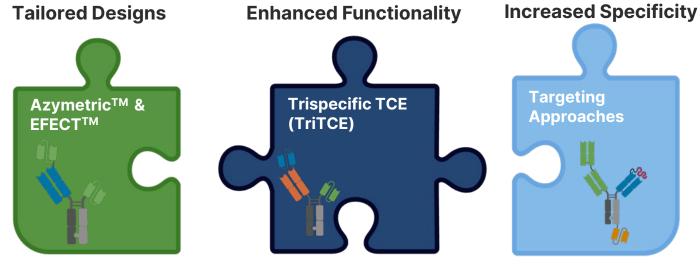
DAR: drug to antibody ratio; ISAC: immune stimulating antibody conjugate; MOA: mechanism of action

Making a Meaningful Difference

2

## **Differentiated Development of Multispecific Antibody Therapeutics**



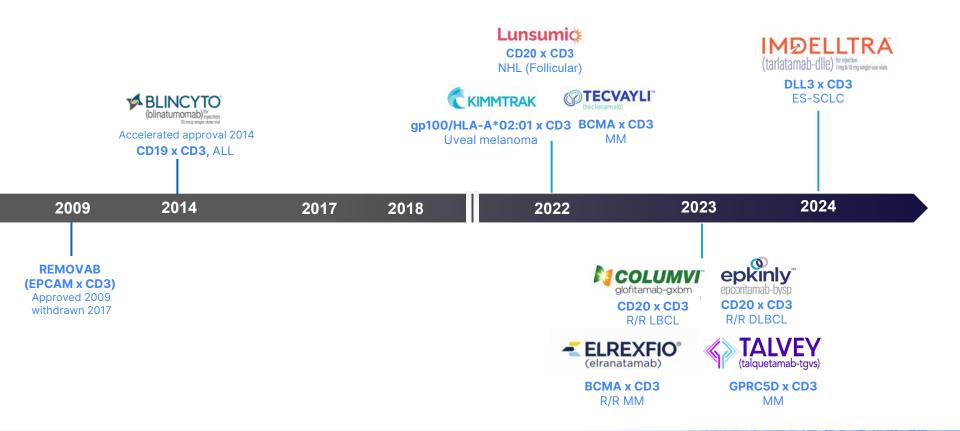

## Versatile multispecific antibody therapeutics enhancing potency and precision with proven track record and robust clinical pipeline

| Program                                                    | Potential Indication                                | Target(s)                                  | Preclinical Phase 1 Phase 2 Pivotal                   | Collaboration<br>Partners     |
|------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------|
| Zanidatamab<br>Bispecific                                  | BTC                                                 | HER2 x HER2                                | HERIZON-BTC-302                                       | Jazz Pharmaceuticals.         |
|                                                            | GEA                                                 | HER2 x HER2                                | HERIZON-GEA-01                                        | Jazz Pharmaceuticals.         |
|                                                            | BC                                                  | HER2 x HER2                                | EMPOWHER <sup>1</sup>                                 | Jazz Pharmaceuticals.         |
|                                                            | BC and other solid tumors                           | HER2 x HER2                                | 8+ ongoing Phase 1 and Phase 2 trials ( <u>view</u> ) | Jazz Pharmaceuticals.         |
| <b>ZW171</b><br>Bispecific T cell Engager                  | OVCA, NSCLC and<br>other MSLN-expressing<br>cancers | MSLN x CD3 (2+1)                           | NCT06523803 Phase 1 clinical trial Initiated          |                               |
| TriTCE Co-Stimulatory<br>Trispecific T cell engager        | Under active evaluation                             | CLDN18.2 x CD3 x CD28<br>DLL3 x CD3 x CD28 | IND candidate nomination studies                      |                               |
| TriTCE Checkpoint Inhibition<br>Trispecific T cell engager | Under active evaluation                             | TAA x PD-L1 x CD3                          | Pilot toxicology studies                              |                               |
| Selected Partnered Programs                                |                                                     |                                            |                                                       |                               |
| JNJ-78278343<br>Bispecific                                 | Castration-Resistant<br>Prostate Cancer             | CD3 x KLK2                                 | Azymetric™   EFECT™                                   | Johnson-Johnson<br>innovation |

CD28: cluster of differentiation 28; CLDN: claudin; DLL3: delta-like ligand 3; KLK2: kallikrein-related peptidase 2; PD-L1: programmed cell death ligand 1; TAA: tumor associated antigen. 1. Trial initiation expected in the second half of 2024.

## Plug and Play Platforms to Build Differentiated Therapeutic Cell Engagers

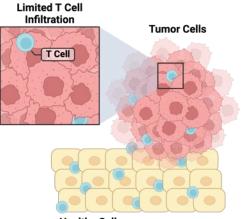




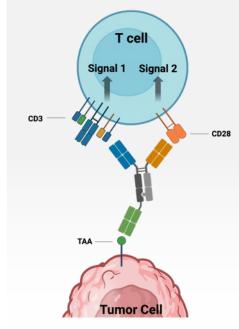

- Azymetric<sup>™</sup>: Foundational platform enabling generation of multiple bi- and multispecific IgG formats (zanidatamab, ZW171)
- EFECT™: FcyR modulation (ZW171)
- TriTCE Co-stim with integrated CD28 costimulation
- **TriTCE CPI** with integrated checkpoint inhibition
- Dual and Tri-TAA targeting
- Novel tumor-specific targets
- Conditional activation



#### Accelerated Pace of TCE Approvals in Liquid Tumors but Unmet Need Remains in Solid Tumors






#### Zymeworks Trispecific Co-stimulatory T Cell Engagers: Overcoming Lack of Efficacy and zymeworks Durability of Responses in Solid Tumors by Optimization of Signal 1 and 2

## Low T cell infiltration and T cell anergy remain challenges in the treatment of solid tumors

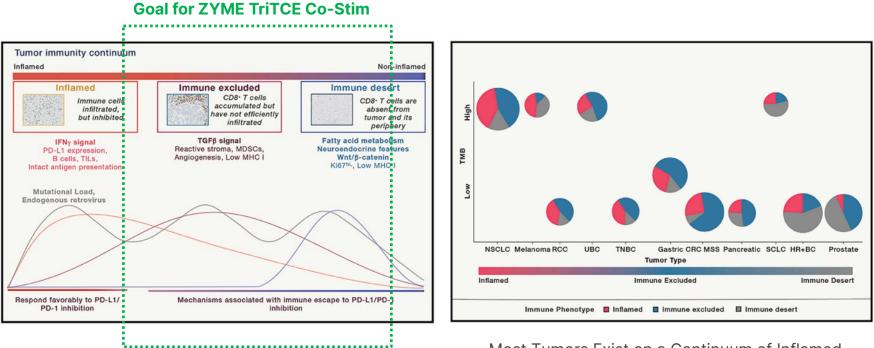


**Healthy Cells** 



#### Zymeworks Trispecific Co-stimulatory Program

# Provides Signal 1 (CD3) and Signal 2 (CD28) in one molecule to **increase T** cell activation and proliferation


Engineered to balance signal 1 and 2 for optimized **target-dependent T cell activation** and expansion

TriTCE Co-stim have the potential to provide **more durable responses** and reinvigorate T cell responses in 'cold' tumors with lower T cell infiltration

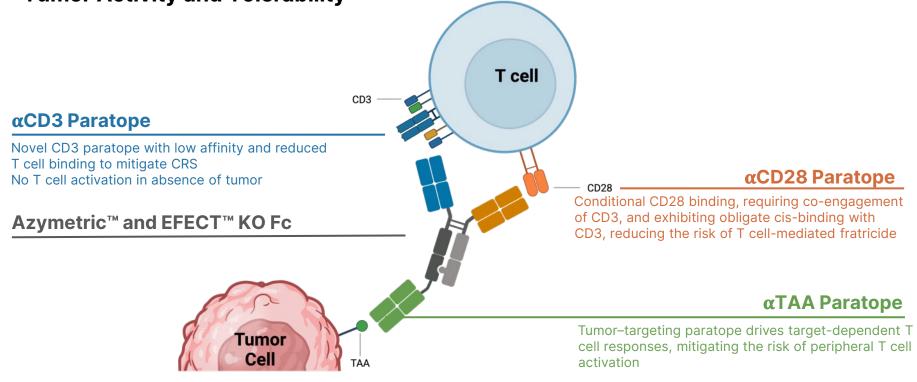
Arvedson T et al Ann Rev Cancer Biol 2022

#### **TriTCE Co-stim Designed to Improve Responses in Low T cell Environments**





Most Tumors Exist on a Continuum of Inflamed, Excluded and Desert Immune Phenotypes


Hedge and Chen 2020 Immunity 52

Making a Meaningful Difference

Hand H

## TriTCE Co-stim Engineered for Enhanced T Cell Functionality, Anti-Tumor Activity and Tolerability





T cell engager antibody design is critical to elicit **optimal T cell synapse formation** and to the **widened therapeutic index** 

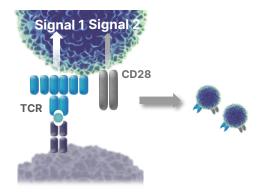
CRS: cytokine release syndrome; KO Fc: knocked out fragment crystallizable region of antibody (Fc).



### CD28 Selected Based on Biology and Ability to Engineer Conditional Co-stimulatory Molecule

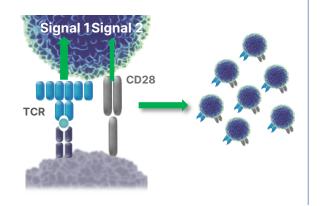


|                                                                           | CD2                                                                                                                                                                                                                         | 41BB                                                                                                                  | CD28                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expression                                                                | Expressed on virtually all T cells, thymocytes, NK cells, dendritic cells                                                                                                                                                   | Inducible<br>CD8+ T cells and helper CD4+ T cells, NK<br>cells, B cells, monocytes, and DCs                           | Constitutive, inducible<br>Naïve and activated CD4+ and CD8+ T cells,<br>plasma cells                                                                                                                                        |
| Activation Requirements                                                   | Monovalent, moderate/low binding<br>affinity                                                                                                                                                                                | Multimerization, moderate/low binding affinity                                                                        | Monovalent, low binding affinity                                                                                                                                                                                             |
| Activation Output                                                         | Enhances T-cell activation, T- or NK-<br>mediated cytolysis, apoptosis in<br>activated peripheral T-cells<br>Limited IL-2 induction precluding local<br>(intratumoral) expansion of T cells via<br>paracrine/autocrine IL-2 | Enhances T cell proliferation, survival and cytokine secretion, inducing IL-2 production Enhances anti-tumor activity | Enhances T cell proliferation, survival and cytokine<br>secretion, priming naïve T cells, inducing IL-2<br>production<br>Enhances anti-tumor activity<br>Ability to expand and maintain Tpex and prevent<br>Tex <sup>2</sup> |
| Ability to Signal in<br>Absence of Signal 1?                              | Yes <sup>1</sup>                                                                                                                                                                                                            | No                                                                                                                    | No (monovalent engagement)<br>Yes (superagonist, bivalent TGN1412)                                                                                                                                                           |
| Ability to Engineer Ab<br>with Co-stimulation<br>Conditional on Signal 1? | Unlikely<br>(signal-1 independent signaling)                                                                                                                                                                                | Yes                                                                                                                   | Yes                                                                                                                                                                                                                          |


1. De Sousa et al. 2024 iScience 27, 109267 2. Humblin et al., 2023, Sci. Immunol. 8, 25



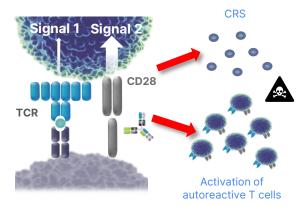
## Balance of T Cell Activation by Signal 1 and Signal 2 Critical to Achieve Optimal T Cell Activation And Prevent Severe Adverse Events




**No signal 2** T cell anergy and limited T cell proliferation



T cell anergy, reduced T cell activation and proliferation


**Optimal Signal 1 and Signal 2** T cell activation and proliferation

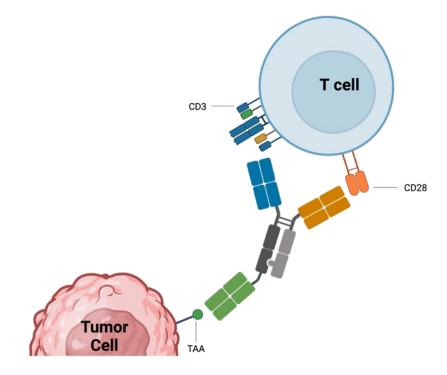


Optimal signal strength for T cell activation



Induction of cytokine release syndrome (CRS) and/or immune-related adverse events (irAEs)




Toxicities associated with T cell overactivation







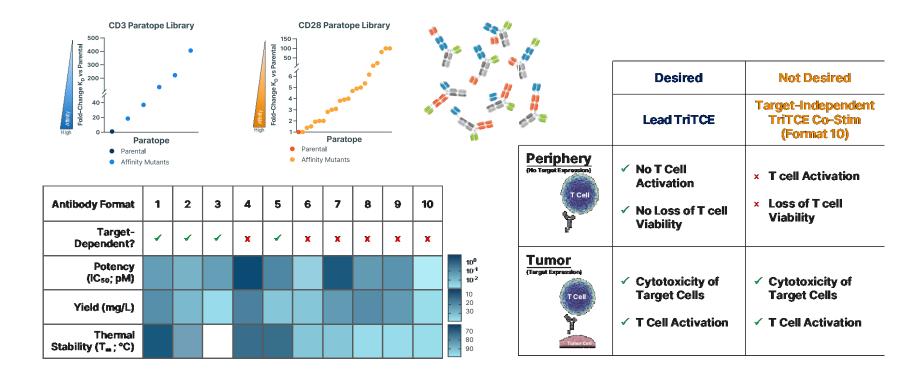
#### Conditional CD28 Co-stimulation and Obligate cis T cell Binding



- ✓ Balanced activation of CD3 and CD28
- ✓ Low affinity CD3 and CD28 binding

✓ **Conditional CD28 engagement**, requires co-engagement of CD3

✓ **Obligate cis T cell binding**, no T-T bridging or T cell fratricide

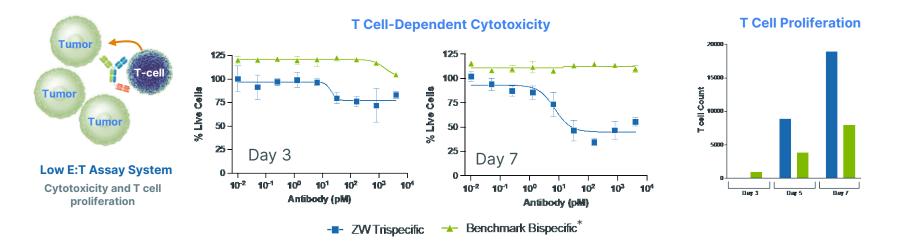

✓ Enhanced target-dependent activity

✓ Plug and play platform, transferable to other tumor targets



# Lead TriTCE Co-stim Selected Following Extensive Format Screening for Potent, Target-Dependent T cell Activation








## Trispecifics Exhibit Improved Potency & Maximum Cytotoxicity Over Bispecifics with Long Term Co-culture at Low T cell to Tumor Cell Ratios

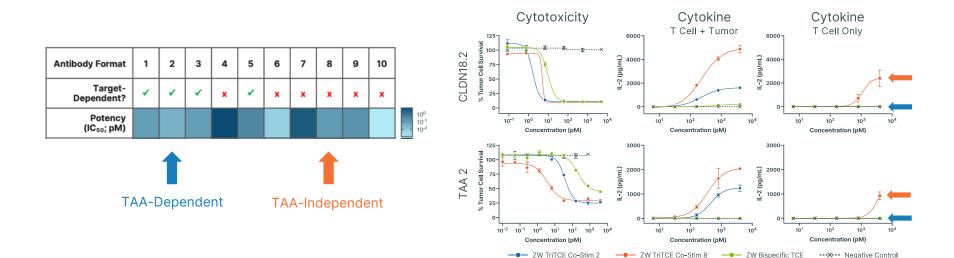


Increased T cell Proliferation and Anti-tumor Activity in Long Term Low E:T Co-cultures



Developed long term co-cultures at low T cell to tumor cell (E:T) ratios to better represent conditions in solid tumors

Activity in long term low E:T cultures differentiates trispecifics vs. bispecific benchmarks


\* Benchmark Bispecific targets same TAA as trispecific



## In vitro Screening of Multivalent Geometries and Affinities Enables Selection of Best-in-Class Trispecific TCEs



Lead TriTCE Co-stim Format Identified Through Extensive Screening and is Transferable Across Targets





#### **TriTCE Co-stim Platform and Workflow Established**





Platform established and evaluated with multiple targets including CLDN18.2 and DLL3







#### Design

Trispecific TCE with optimized TAA, CD3, CD28 binding affinity and geometry using Azymetric<sup>™</sup> and EFECT<sup>™</sup> platforms



#### Mechanism

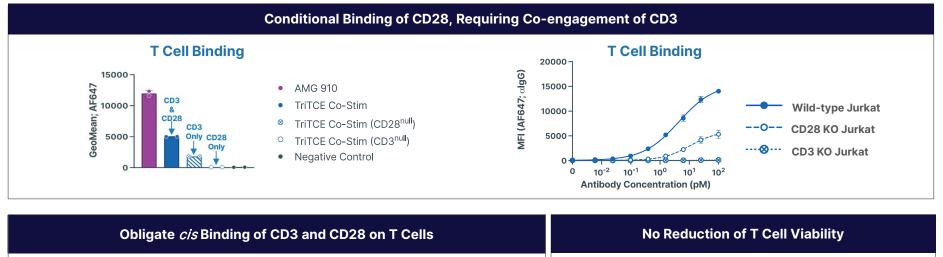
Targets CLDN18.2-expressing tumor cells and CD3 and CD28 on T cells, TAA-dependent T cell mediated cytotoxicity prevents activation of effector T cells in the absence of TAA

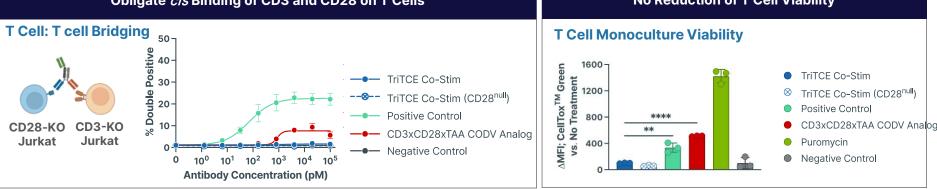


CLDN18.2 TriTCE Co-stim

Therapeutic Program for the

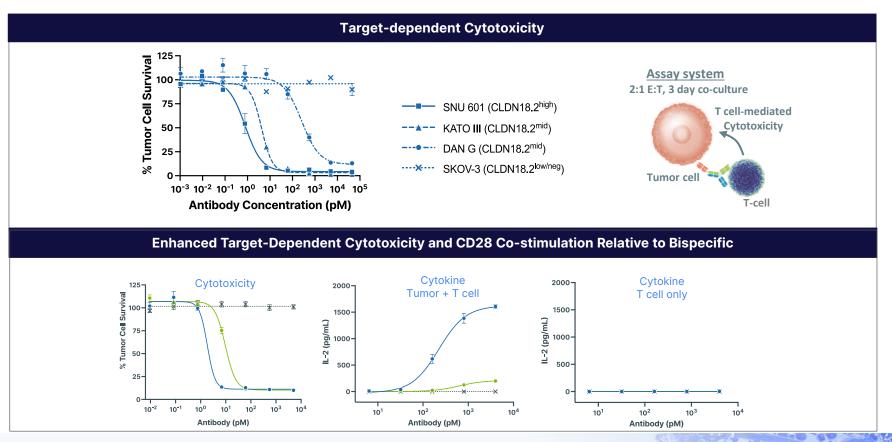
Treatment of CLDN18.2-


Expressing Solid Tumors


#### Profile

Differentiated long term cytotoxicity at low effector to T cell ratios, increased T cell proliferation, survival, and anti-tumor activity with reduced cytokine release. Safe in in vitro and in vivo CRS models

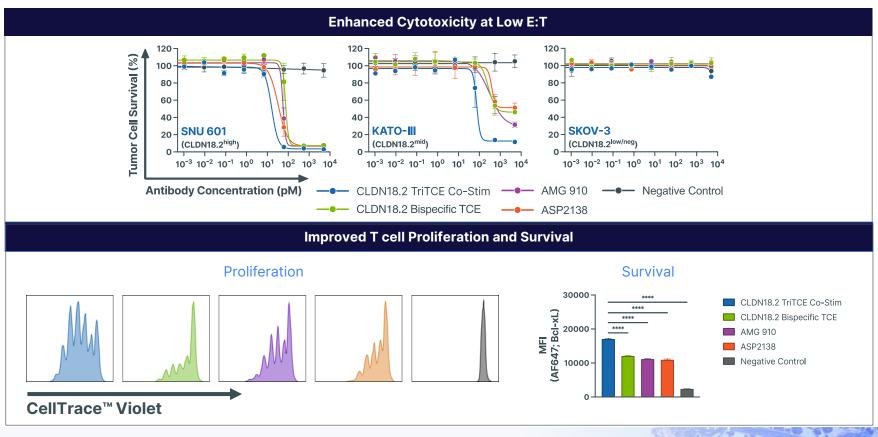
## CLDN18.2 TriTCE Co-stim Exhibits Conditional CD28 Binding and Obligate Cis T Cell Engagement







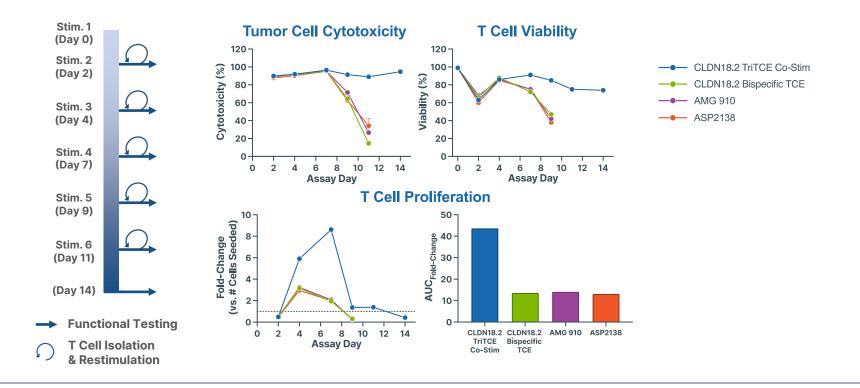

## CLDN18.2 TriTCE Co-stim Mediates Conditional CD28 Co-stimulation Dependent on CD3 Engagement and TAA Expression






Making a Meaningful Difference

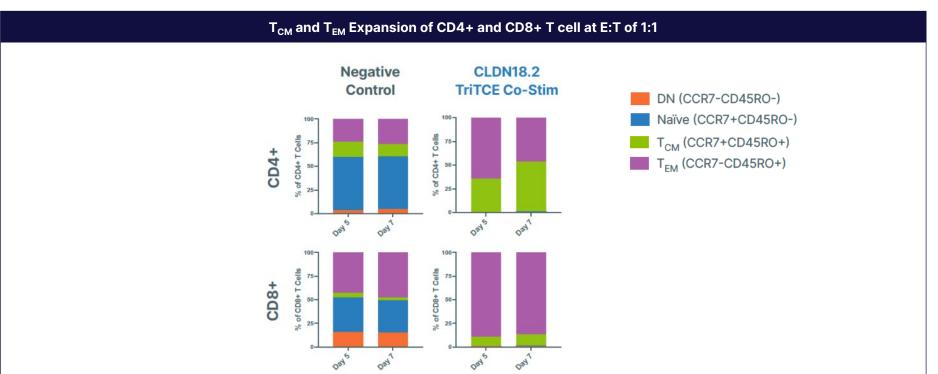
18


### CLDN18.2 TriTCE Co-stim Enhances T cell Responses and Anti-tumor Activity zymeworks Versus Benchmark Bispecific TCEs



## CLDN18.2 TriTCE Co-stim Displays Sustained T Cell Fitness and Anti-tumor Activity in a Serial Repeat Challenge Assay




Sustained Tumor Cell Cytotoxicity, T cell Viability and T Cell proliferation Over Repeated T cell Simulation

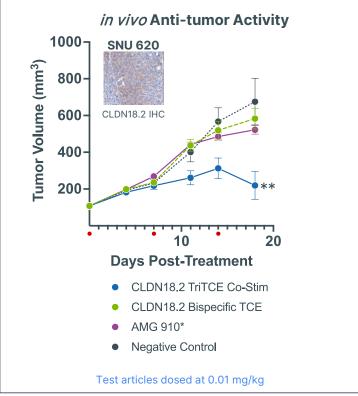


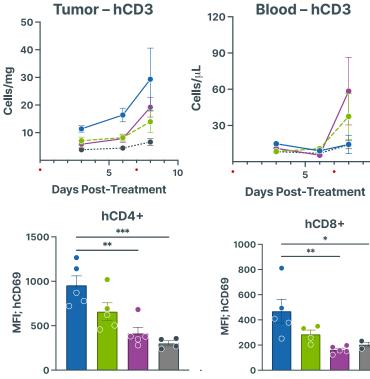


# CLDN18.2 TriTCE Co-stim Treatment Results in Activation of Naive and Expansion of $T_{CM}$ and $T_{EM}$ Memory Cell Subsets



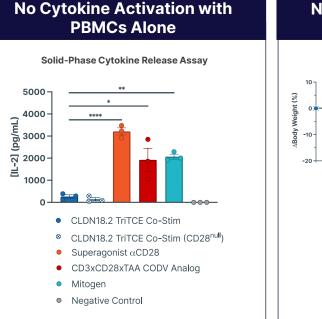



Test articles incubated with PBMCs co-cultured with CLDN18.2-expressing SNU 601 target cells and assessed for expansion of memory subsets. Memory subsets of CD4+ or CD8+ T cells were analyzed by flow cytometry after 5 and 7 days of co-culture at an E:T of 1:1.

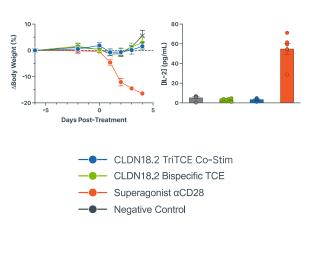

#### CLDN18.2 TriTCE Co-stim Mediates Enhanced Anti-tumor Activity and Increases Activated Intratumoral T cells *in vivo* Compared to Benchmark Bispecific TCEs



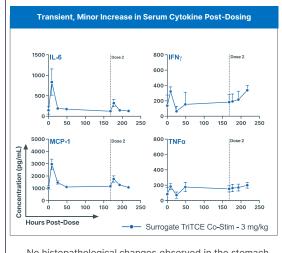
10





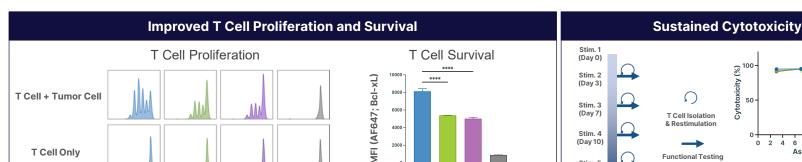

#### CLDN18.2 TriTCE Co-stim has a Favorable Safety Profile






#### No Systemic Cytokine Release in Humanized Mouse Model




#### Well Tolerated in NHP



No histopathological changes observed in the stomach, where CLDN18.2 is expressed (Türeci et al., 2011)

#### **TriTCE Co-stim Applicable to Additional Targets** DI I 3 TriTCF Co-stim: CD3 x CD28 x DI I 3

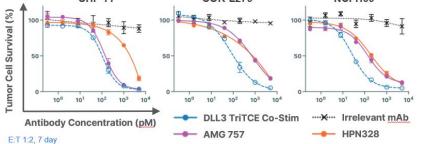


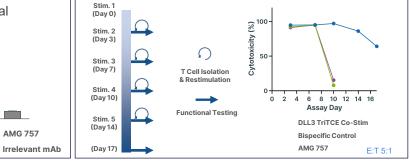


6000-

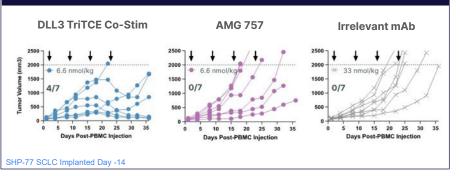
4000.

2000 -


**DLL3 TriTCE Co-Stim** 


**Bispecific Control** 

AMG 757



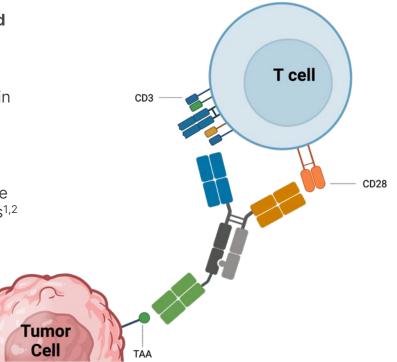

CellTrace<sup>™</sup> Violet










#### Making a Meaningful Difference

T Cell Only



#### **TriTCE Co-stim Summary**

- Zymeworks TriTCE Co-stim provides balanced CD3 and CD28 activation to prevent overactivation of T cells<sup>1,2</sup>
- Enhanced tumor target-dependent activity associated with sustained T cell viability and cytotoxicity resulting in improved anti-tumor activity in preclinical models compared to bispecific TCEs<sup>1-5</sup>
- ✓ No CD28 binding in absence of CD3 engagement, lowering risk of CD28-mediated immune related adverse events (irAEs), well tolerated in both in vivo CRS models<sup>1,2</sup> and in non-human primates<sup>3</sup>
- Platform established and transferable to other tumor targets



1. Newhook et al., Cancer Res. (2023); 2. Newhook et al., JTIC (2023); 3. Newhook Let al., Abstract #6719 presented at AACR Annual Meeting 2024; 4. Repenning P et al., Abstract #6716 Presented at AACR Annual Meeting 2024, 5. Newhook et al., SITC (2023); 6. Skokos et al., Sci. Transl. Med. (2020); 7. Dragovich et al., Cancer Research (2023); 8. Stein et al., Journal Clinical Oncology (2023); 9. Martins et al., Nature Reviews Clin Oncol (2019); 10. Eastwood et al., BIP (2010); 11. Roemer et al., Blood (2011); 12. Hui et al., Science (2017); 13. Humphrey et al. (2011) J Natl Cancer Inst. 14. Seung et al., Nature (2022); 15. Promsote et al., Nature Communications (2023).

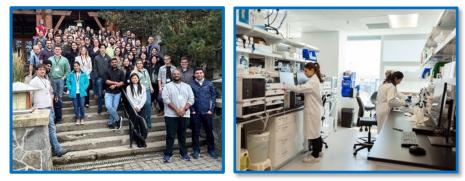
#### Acknowledgements...A Global Team Effort



#### https://www.zymeworks.com/publications/

# TriTCE Co-stim: A next generation trispecific T cell engager platform with integrated CD28 co-stimulation, engineered to improve responses in the treatment of solid tumors

Lisa Newhook, Purva Bhojane, Kurt Stahl, Nichole K. Escalante, Polly Shao, Diego Perez Escanda, Kesha Patel, Marylou Vallejo, Bing Catherine Wu, Gavin Storoschuk, Peter Repenning, Alexandra Livernois, Chayne L. Piscitelli, Nicole Afacan, Paul A. Moore, Nina E. Weisser, Thomas Spreter von Kreudenstein


# DLL3 TriTCE Co-stim: A next generation Trispecific T cell engager with integrated CD28 co-stimulation for the treatment of DLL3-expressing cancers

Peter Repenning, Desmond Lau, Diana Canals Hernaez, Alec Robinson, Diego Perez Escanda, Mariana Rocha, Aditi Deshmukh, Begonia Silva Moreno, John Zhang, Polly Shao, Nichole Escalante, Lisa Newhook, Purva Bhojane, Chayne L. Piscitelli, Nicole Afacan, Paul A. Moore, Thomas Spreter von Kreudenstein, Nina E. Weisser

## Next-generation co-stimulatory trispecific T cell engagers (TriTCEs) for the treatment of solid tumors

Lisa Newhook, Purva Bhojane, Peter Repenning, Diego Perez, Nichole Escalante, Patricia Zwierzchowski, Alec Robinson, Lauren Clifford, Harsh Pratap, David Douda, Chayne Piscitelli, Nicole Afacan, Thomas Spreter von Kreudenstein, Nina E. Weisser





#### Zymeworks' Multispecific Antibody Therapeutics Team

