Screening novel format antibodies to design bispecific ADCs that address target heterogeneity

Stuart D. Barnscher, Dunja Urosev, Kevin Yin, Andrea Hernandez Rojas, Sam Lawn, Vincent Fung, Jodi Wong, Araba Sagoe-Wagner, Lemlem Degefie, Ali Livernois, Catrina Kim, Paul A. Moore, Jamie R. Rich Author Affiliations: Zymeworks Inc., Vancouver, BC, Canada

Introduction

Bispecific Format

Inter-patient and intra-tumoral target heterogeneity is a challenge in the design of antibody-drug conjugates (ADCs) that target a single tumor associated antigen (TAA). Bispecific ADCs that can target two different TAAs both simultaneously and independently may overcome challenges associated with target heterogeneity and the reliance on target co-expression associated with bivalent bispecific antibodies.

Here we describe a novel approach to the design and screening of a FR α x NaPi2b bispecific ADC library with the aim of targeting tumors that express either FR α , NaPi2b, or both targets.

Azymetric[™] enables a variety of bispecific formats

igure 1. Table of 11 different bispecific antibody formats across three different target valencies enabled by the Azymetric latform. Ven diagrams of the hypothetical co-expression of two targets within a given indication and the potential addressable patient population for the three different formats: a 1+1 bispecific format that contains one binding arm to each target, a 2+1 bispecific format that contains two binding arms to one target and one binding arm to a different target, and a format that contains two binding arms to each targe

Target heterogeneity in patient population

Figure 2. (A) A hypothetical distribution of patients that express target A, target B, both targets, or neither target. (B) immunohistochemistry score of FR α and NaPi2b in 98 high-grade serous ovarian cancer (HGSOC) patient samples.

Target heterogeneity in tumor mass C SLC34A2 and FOLR1 expression within individual patient tumor FRa⁻/NaPi2b⁺ FRα⁻/NaPi2l Left Adnexa Left Upper Quadran Omentum **Β** FRα IHC NaPi2b IHC Peritoneum Right Adnexa Right Upper Quadran FOLR1 Figure 3. (A) Cartoon of a tumor mass with cells expressing $FR\alpha$, NaPi2b, both antigens, or neither antigen. (B)

immunohistochemistry staining of FRα and NaPi2b from the same patient sample and same region. (C) Single cell RNA analysis of treatment-naive high-grade serous ovarian cancer (HGSOC) patient tumor samples

Paratopes used in bispecific formats

Paratope	Target	FSA cell binding EC ₅₀ (nM)	OAA cell binding EC ₅₀ (nM)				
12A10	NaPi2b ^a	0.7	3.4				
10L18	FRα ^b	0.2	8.5				
76	FRα ^b	2.9	3.3				
2L16	FRα ^b	0.6	5.8				
aTOV21G cell line: b IEG-3 cell line							

Figure 4. Table and figure of the 4 paratopes used to generate the 48 bispecific antibodies depicting their on-cell binding EC50 for FSA (full sized antibody and OAA (one armed antibody) on TOV21G and JEG-3 cells. FSA: full sized antibody; OAA: one armed antibody.

Generation and analytical characterization of 48 bispecific antibodies

Bis fc	pecific ormat	Bispecific ID	Chain A paratope	Chain B paratope	Monomer (%)	Reoxidized Bispecific (%)	Expected Mass (Da)	Expected mass detected	Mass signal (%)
1+1 Bispecifi c Format		Bsp1	12A10	10L18	94	93	145,226	Yes	80
	3.2	Bsp2	12A10	76	95	91	146,624	Yes	100
	N	Bsp3	12A10	2L16	94	92	145,950	Yes	92
2+1 Bispecific Format		Bsp4	12A10	2 x 10L18	94	97	193,059	Yes	100
		Bsp5	12A10	2 x 76	93	96	195,874	Yes	100
	N-term	Bsp6	12A10	2 x 2L16	92	93	194,512	Yes	100
		Bsp7	10L18	2 x 12A10	96	95	193,537	Yes	100
		Bsp8	76	2 x 12A10	95	95	194,936	Yes	100
		Bsp9	2L16	2 x 12A10	94	95	194,264	Yes	100
		Bsp10	12A10	2 x 10L18	94	95	193,055	Yes	100
		Bsp11	12A10	2 x 76	94	93	195,875	Yes	100
		Bsp12	12A10	2 x 2L16	94	94	194,512	Yes	100
	*	Bsp13	10L18	2 x 12A10	94	/	193,612	Yes	38
	C-term	Bsp14	/6	2 x 12A10	95	4	195,017	Yes	34
		Bsp15	2L16	2 X 12A10	93	4	194,338	Yes	40
2+2 Bispecific Format		Bop17	2 x 12A10	2 X 10L18	92	91	241,372	Yes	00
	N-torm	Ben18	2 x 12A10	2 x 70	93	97	244,109	Voc	09
	N-term	Bsp10 🗸	2 x 12A10	2 x 201 18	95	3	242,020	Yes	71
		Bsp20	2 x 12/10	2 x 76	96	2	244 279	Yes	83
	C-term	Bsp21	2 x 12/10	2 x 2L16	94	4	242,909	Yes	91
		Bsp22	76 scFv	12A10	91	51	124,837	Yes	100
, +	ΗL	Bsp23	2L16 scFv	12A10	94	47	125,564	Yes	100
fic Format		Bsp24	2 x 2L16	12A10	93	31	172,877	Yes	100
		Bsp25	2 x 12A10	10L18	95	2	172,035	Yes	85
	N-term	Bsp26	2 x 12A10	76	95	2	173,436	Yes	100
		Bsp27	2 x 12A10	2L16	94	3	172,762	Yes	77
		Bsp28	12A10 Fab +	76	86	32	173,922	Yes	100
		Bsp29	12A10 Fab +	2L16	95	36	172.891	Yes	100
peci		Bsn30	2L16 scFv	12410	9/	27	171 566	Ves	100
2+1 Bisp		Bsp31	2 x 76	12A10	84	.31	174 069	Yes	100
		Bsp32	2 x 2L16	12A10	90	33	173.020	Yes	100
		Bsp33	2 x 12A10	10L18	95	2	172,178	Yes	77
	C-term	Bsp34	2 x 12A10	76	95	2	, 173,577	Yes	54
		Bsp35	2 x 12A10	2L16	94	2	172,900	Yes	72
-		Bsp36	2 x 2L16	2 x 12A10	96	17	221,190	Yes	100
		Bsp37 🔶	2 x 12A10	2 x 10L18	94	1	219,868	Yes	76
	i i	Bsp38 🔶	2 x 12A10	2 x 76	94	5	222,579	No	0
	N-term	Bsp39 🔶	2 x 12A10	2 x 2L16	91	4	221,201	No	0
mat		Bsp40 🔴	2 x 10L18	2 x 12A10	94	0	219,888	No	0
2+2 Bispecific Forr		Bsp41 🔴	2 x 76	2 x 12A10	85	4	222,511	Yes	67
		Bsp42 🔴	2 x 2L16	2 x 12A10	91	1	221,345	No	0
	<i>•</i>	Bsp43 🔶	2 x 12A10	2 x 10L18	93	1	220,037	Yes	82
	C-term	Bsp44 🔶	2 x 12A10	2 x 76	94	1	222,837	Yes	100
	~	Bsp45 🔶	2 x 12A10	2 x 2L16	87	4	221,510	Yes	90
		Bsp46	2 x 12A10 + 10L18 scFv	10L18	95	15	219,758	Yes	100
		Bsp47	2 x 12A10+ 76	76	89	14	222,248	Yes	100
	N+C-term	Bsp48 🌓	2 x 12A10 + 2L16 scFv	2L16	95	13	221,209	Yes	100

signal intensity of heterodimer and homodimer species.

In vitro functional characterization of 48 bispecific antibodies and ADCs

Figure 5. Table of 48 bispecific antibodies and their analytical characterization. Monomer content was assessed by high performance liquid chromatography size exclusion chromatography (HPLC-SEC). The monomer peak of each bispecific antibody was identified as the peak with the same retention time as monospecific control antibodies. Reoxidation was assessed by capillary electrophoresis sodium dodecyl-sulfate (CE-SDS). Reoxidized antibodies were identified by bands of the corresponding size on non-reducing CE-SDS and the extent of reoxidation determined by the band density relative to other expected antibody fragments. Intact liquid chromatography mass spectroscopy (LC-MS) was used to confirm the identity of the bispecific antibody and to determine the presence of homodimers. The expected mass was calculated using the primary sequences of each half antibody component in addition to expected post-translation modifications. The mass signal was calculated as a percentage of the signal intensity of the desired heterodimer over the total

Half antibodies and homodimers are combined in equimolar amounts

Reduction of

interchain

disulfides

Figure 7. Schematic of the workflow used to generate 48 bispecific antibodies and their corresponding ZymeLink[™] Auristatin ADCs. The desired corresponding half-antibody components were reduced in a single pot. Following removal of reducing agent, each reaction was split in half with one portion undergoing oxidation and the other undergoing conjugation. Biophysical and cell-based assays were performed using high throughput methods for both mAbs and ADCs.

Conjugation

Auristatin

to ZymeLink™

Removal of

reducing agent

excess

Bispecific analytical and functional high throughput screening

AACR Annual Meeting 202 Abstract #2052

- Formats with two 12A10 NaPi2b paratopes were more active.
- 2+2 and 2+1 bispecific formats were more active in a broader range of cell lines compared to 1+1 bispecific formats.
- 2+2 N-term Fab bispecific formats were more cytotoxic than 2+2 Cterm Fab formats.
- Similar functional trends were observed for similar formats across Fab-only and scFv-containing bispecifics.

1) Vazquez-Garcia et al 2022 Nature 612: 778