AACR-NCI-EORTC International Conference on **MOLECULAR TARGETS AND CANCER THERAPEUTICS**

October 11-15, 2023 | Hynes Convention Center | Boston, MA

Refining our understanding of ADCs: Drug development insights from 40 years of data

Raffaele Colombo, PhD Zymeworks Inc, Vancouver, BC, Canada.

Disclosure Information

Molecular Targets and Cancer Therapeutics October 11-15, 2023 | Boston, MA

Raffaele Colombo

I have the following relevant financial relationships to disclose: Employee of: Zymeworks Inc. Stockholder in: Zymeworks Inc., AstraZeneca

40 years of (clinical) ADC data

305 ADCs have entered the clinic:

- 13 approved (11 by FDA)
- 175 in active clinical development
- 117 discontinued

Data from ~170 ADCs to drive correlations

~130 new ADCs in the clinic with no data (yet)

Clinical ADC landscape has evolved over time

AAC

American Association

for Cancer Research

NATIONAL

AACR-NCI-EORTC INTERNATIONAL CONFERENCE: MOLECULAR TARGETS AND CANCER THERAPEUTICS

Classic ADC dogma

- 1. The therapeutic window dogma:
 - ADCs widen the therapeutic window of the conjugated drug by both *increasing the maximum tolerated dose* (MTD) and *reducing the minimum efficacious dose* (MED) of the drug

Figure from: M. M. Schutten, NorCal Society of Toxicology Meeting, September 27, 2012

AACR-NCI-EORTC INTERNATIONAL CONFERENCE: MOLECULAR TARGETS AND CANCER THERAPEUTICS

Classic ADC dogma

- The therapeutic window dogma: 1.
 - ADCs widen the therapeutic window of the conjugated drug by both increasing the maximum tolerated dose (MTD) and reducing the minimum efficacious dose (MED) of the drug

2. The stability dogma:

A highly stable linker is paramount to the clinical success of the ADC

Figure from: J. Z. Drago et al. Nat. Rev. Clin. Oncol. 2021, 18, 327-344

AACR-NCI-EORTC INTERNATIONAL CONFERENCE: MOLECULAR TARGETS AND CANCER THERAPEUTICS

Classic ADC dogma

- The therapeutic window dogma: 1.
 - ADCs widen the therapeutic window of the conjugated drug by both increasing the maximum tolerated dose (MTD) and reducing the minimum efficacious dose (MED) of the drug

2. The stability dogma:

- A highly stable linker is paramount to the clinical success of the ADC
- 3. The magic bullet dogma:
 - ADCs deliver conjugated drugs selectively to cancer cells • while sparing normal cells. If the payload is bystander active, it can then kill neighboring cancer cells.

Figure from: I. Cheng-Sánchez et al. Mar. Drugs. 2022, 20, 494

Classic ADC dogma

1. The therapeutic window dogma:

- ADCs widen the therapeutic window of the conjugated drug by both *increasing the maximum tolerated dose* (MTD) and *reducing the minimum efficacious dose* (MED) of the drug
- 2. The stability dogma:
 - A *highly stable linker* is paramount to the clinical success of the ADC
- 3. The magic bullet dogma:
 - ADCs deliver conjugated drugs *selectively to cancer cells* while sparing normal cells. If the payload is bystander active, it can then kill neighboring cancer cells.

The ADC therapeutic window dogma was established in preclinical models

Example: T-DM1 showed better efficacy and tolerability than free DM1 preclinically

T-DM1 is significantly more efficacious than free DM1 in mouse models

Conjugated DM1 is better tolerated than free DM1 in rats

Similar trends observed for numerous other ADCs

T. T. Junttila et al. *Breast Cancer Res. Treat.* **2011**, *128*, 347-356 K. A. Poon et al. *Toxicology and Applied Pharmacology* **2013**, *273*, 298-313

Human MTD of approved ADCs is comparable to human MTD of related small molecules

*approved by the NMPA of China

R. Colombo, J. R. Rich. Cancer Cell, 2022, 40, 1255-1263

Approved ADCs don't have higher MTD than discontinued ADCs

Revised representation of ADC therapeutic window (in humans)

Revised representation based on emerging clinical data

ADCs do not significantly increase the maximum tolerated dose (MTD) of the payload

- Minimum efficacious dose (MED) is not established in the clinic
- Comparison of clinical efficacy at their MTD/RP2D

R. Colombo, J. R. Rich. Cancer Cell, 2022, 40, 1255-1263

ADCs improve ORR over related small molecules when dosed at MTD/RP2D

Selected cross-trial comparisons

Breast cancer

Legend:

- Blue = ADC ORR (%)
- Pink = Small molecule ORR (%)
- Darker bars = CR (%)
- Lighter bars = PR (%)

R. Colombo, J. R. Rich. Cancer Cell, 2022, 40, 1255-1263

Efficacy of ADCs is improved over related small molecules in multiple indications

Revised representation of ADC therapeutic window (in humans)

ADCs do not significantly increase the maximum tolerated dose (MTD) of their conjugated payloads

for Cancer Researc

NATIONA

- Minimum efficacious dose (MED) not
 established in clinical studies
- When dosed at their MTD/RP2D, **ADCs** can offer improved efficacy over related unconjugated small molecules (and, in certain cases, standard of care)

R. Colombo, J. R. Rich. Cancer Cell, 2022, 40, 1255-1263

•

Classic ADC dogma

- 1. The therapeutic window dogma:
 - ADCs widen the therapeutic window of the conjugated drug by both *increasing the maximum tolerated dose* (MTD) and *reducing the minimum efficacious dose* (MED) of the drug

2. The stability dogma:

- A highly stable linker is paramount to the clinical success of the ADC
- 3. The magic bullet dogma:
 - ADCs deliver conjugated drugs selectively to cancer cells while sparing normal cells. If the payload is bystander active, it can then kill neighboring cancer cells.

There are two types of ADC drug-linker instability in circulation

= release of the whole drug-linker

R. Colombo et al. Cancer Research, 2023, 83(7_Supplement), 1538

Approved ADCs with antibody-linker instabilities

American Association for Cancer Research

Percentage of drug remaining conjugated to the antibody after 7 days in plasma

R. Colombo et al. Cancer Research, 2023, 83(7_Supplement), 1538

Approved ADCs with linker-drug instabilities

Percentage of drug remaining conjugated to the antibody after 7 days in plasma

*sacituzumab govitecan has both linker-drug instability and antibody-linker instability, with the former more rapid

R. Colombo et al. Cancer Research, 2023, 83(7_Supplement), 1538

None of the approved ADCs are stable in circulation

*sacituzumab govitecan has both linker-drug instability and antibody-linker instability, with the former more rapid

Antibody-linker instabilities

Linker-drug instabilities

R. Colombo et al. Cancer Research, 2023, 83(7_Supplement), 1538

Approved ADCs with thiol-maleimide conjugation

*sacituzumab govitecan has both linker-drug instability and antibody-linker instability, with the former more rapid

Antibody-linker instabilities

Linker-drug instabilities

R. Colombo et al. Cancer Research, 2023, 83(7_Supplement), 1538

ADCs with thiol-maleimide conjugation are susceptible to deconjugation

AAG

American Associatio

for Cancer Research

NIH

Deconjugated drug-linker re-conjugates to albumin (thiol-exchange)

AAC

American Association

for Cancer Research

NIH

EORTC

Deconjugated drug-linker re-conjugates to albumin (thiol-exchange)

Approved ADCs with thiol-maleimide conjugation undergo deconjugation

Under physiological conditions, unhydrolyzed thiol-maleimide linkers undergo deconjugation

R. J. Christie et al. *J Control Release*. **2015**, 220(Pt B), 660–670 H. Habara et al. *Biopharm. Drug Dispos*. **2023** Aug 3. doi:10.1002/bdd.2371. Online ahead of print

AACR-NCI-EORTC INTERNATIONAL CONFERENCE: MOLECULAR TARGETS AND CANCER THERAPEUTICS

Approved ADCs

Antibody-linker stability is not required for successful ADCs

T-DXd: DESTINY-Breast01: N. Engl. J. Med. 2020, 382, 610-621; DESTINY-Breast03: N. Engl. J. Med. 2022, 386, 1143-1154; DESTINY-Breast04: N. Engl. J. Med. 2022, 387, 9-20; DESTINY-Gastric01: N. Engl. J. Med. 2020, 382, 2419-2430; DESTINY-Gastric02: Lancet Oncology. 2023, 24, 744-756; DESTINY-Lung01: N. Engl. J. Med. 2022, 386, 241-251; BV: J. Clin. Oncol. 2012, 30, 2183-2189; EV: Lancet Oncol. 2021, 22, 872-882; PV: Lancet Oncol. 2015, 16, 704–715; TV: Lancet Oncol. 2021, 22, 609-619; Lonca-T: Lancet Oncol. 2021, 22, 790-800

Approved ADCs with linker-drug instabilities

*sacituzumab govitecan has both linker-drug instability and antibody-linker instability, with the former more rapid

Antibody-linker instabilities

R. Colombo et al. Cancer Research, 2023, 83(7_Supplement), 1538

MCC-DM1 linker is unstable resulting in spontaneous payload release

MCC deconjugation rate is similar to MC

AAC

American Associatio

for Cancer Research

Primary catabolites formed from mAb-MCC-DM1:

- **DM1** from linker instabilities (potent and permeable)
- Lys-MCC-DM1 from antibody catabolism (potent and less permeable)

J. He et al. *MAbs* **2018**, *10*, 960-967 J. F. Ponte et al. *Bioconjugate Chem.* **2016**, *2*7, 1588-1598 S. Park et al. *Appl. Sci.* **2021**, *11*, 9437

SPDB-DM4 linker is unstable resulting in spontaneous payload release

Active metabolites formed from mAb-sSPDB-DM4:

- **DM4** (permeable)
- Me-DM4 (permeable)
- Oxidized derivatives of DM4 and Me-DM4 (less permeable)

C. Pouzin et al. J. Pharmacokinet. Pharmacodyn. 2022, 49, 381–394

Calicheamicin ADC linker is unstable resulting in spontaneous payload release

ozogamicin (IO)

B.S. Vollmar et al. Mol. Cancer Ther. 2021, 20, 1112-1120

Sacituzumab govitecan linker is unstable resulting in spontaneous payload release

Improving antibody-linker stability has been a major research focus: thiomab example

CD79b ADCs:

- **Pola-V** (less stable) •
- Ila-V (more stable) ٠

MUC16 ADCs:

Native Cys

stochastic

(less stable)

🛑 and 🔵 = 🖓 🛴 🔍 🗓 🗶 🛚

- Sofi-V (less stable) •
- DMUC4064A (more stable) ٠

ADC MTDs

Increased antibody-linker stability didn't translate into

Polatuzumab vedotin (Pola-V): Lancet Oncol. 2015, 16, 704-715; Iladatuzumab vedotin (Ila-V): Clin. Cancer Res. 2022, 28, 1294-1301; Sofituzumab vedotin (Sofi-V): Ann. Oncol. 2016, 27, 2124-2130; DMUC4064A: Gynecol Oncol. 2021, 163, 473-480

Improving antibody-linker stability may result in emergence of unexpected toxicities

MC-VCit-PABC-MMAE

CD79b ADCs:

- Pola-V (less stable)
- Ila-V (more stable)

MUC16 ADCs:

- Sofi-V (less stable)
- DMUC4064A (more stable)

• and • = $\frac{1}{2} \int_{-\infty}^{\infty} u_{n} \chi_{n} \chi_{n}$

Distinct clinical toxicities: reduced hematological toxicities and neuropathy but increased incidence of ocular toxicities

Selected adverse events (lighter shade, G<3; darker shade, G≥3) Pola-V and Sofi-V (stochastic DAR4); Ila-V and DMUC4064A (thiomab site-specific DAR2)

Polatuzumab vedotin (Pola-V): Lancet Oncol. 2015, 16, 704-715; Iladatuzumab vedotin (Ila-V): Clin. Cancer Res. 2022, 28, 1294-1301; Sofituzumab vedotin (Sofi-V): Ann. Oncol. 2016, 27, 2124-2130; DMUC4064A: Gynecol Oncol. 2021, 163, 473-480

Maytansinoid ADCs with identical antibody, DAR, and dose showed distinct toxicities

Linker-drug instability

T-DM1

- trastuzumab
- stochastic lysine, DAR = 3.5
- MTD = 3.6 mg/kg

T-DM1 releases free payload

Pronounced hematological and liver toxicities for BAT8001 (discontinued) compared to T-DM1 (approved)

Antibody-linker instability

- trastuzumab
- stochastic cysteine, DAR = 3.5
- MTD = 3.6 mg/kg

BAT8001 releases linker-payload

Selected adverse events (lighter shade, G<3; darker shade, G \geq 3)

T-DM1: J. Clin. Oncol. 2012, 30, 3234-3241; BAT8001: Cancer Commun. (Lond.) 2021, 41, 171-182.

Classic ADC dogma

- 1. The therapeutic window dogma:
 - ADCs widen the therapeutic window of the conjugated drug by both *increasing the maximum tolerated dose* (MTD) and *reducing the minimum efficacious dose* (MED) of the drug
- 2. The stability dogma:
 - A highly stable linker is paramount to the clinical success of the ADC
- 3. The magic bullet dogma:
 - ADCs deliver conjugated drugs selectively to cancer cells while sparing normal cells. If the payload is bystander active, it can then kill neighboring cancer cells.

Radiolabeled antibodies can reveal the fate of antibody-based therapeutics

Irrespective of the target, radiolabeled antibodies show high normal tissue distribution and <1% tumor uptake in humans

F. Bensch et al. *Theranostics* **2018**, *8*, 4295-4304

Less than 1% of antibody (and ADC) injected dose reaches the tumor sites

References:

- J. P. Mach et al. N. Engl. J. Med. 1980, 303, 5-10
- A.A. Epenetos et al. Cancer Res. 1986, 46, 3183-3191
- A. M Scott et al. *Clin. Cancer Res.* **2005**, *11*, 4810–4817
- E. C. Dijkers et al. Clin. Pharmacol. Ther. 2010, 87, 586-592
- J. A. Carrasquillo et al. J. Nucl. Med. 2011, 52, 1173–1180
- F. Bensch et al. Theranostics 2018, 8, 4295-4304
- A. N. Niemeijer et al. Nat. Commun. 2018, 9, 4664
- G. Lu et al. Nat. Commun. 2020, 11, 5667
- H. K. Gan et al. J. Nucl. Med. 2021, 62, 787–794
- J. Smit et al. J. Nucl. Med. 2022, 63, 686-693
- S. R. Verhoeff et al. J. Nucl. Med. 2022, 63, 1523-1530

...and others

Antibody catabolism happens mainly in normal tissues and not in the tumor

Imaging time series of a patient with a HER2+ lung tumor post ¹¹¹In-Trastuzumab dose

Adapted from: Sietske B.M. Gaykema et al. Molecular Imaging. 2014, 13, 5

Platform toxicities and target independent MTD highlight normal tissue ADC disposition

Payload-dependent toxicities* ('Platform Tox')

DM1: thrombocytopenia, neuropathy, elevated liver enzymes **DM4:** ocular toxicity, neuropathy, elevated liver enzymes

MMAE: neutropenia, neuropathy **MMAF:** thrombocytopenia, ocular toxicity

DXd: nausea, neutropenia, anemia, ILD **SN38:** diarrhea, neutropenia, anemia

PBDs: edema, pleural effusion, elevated liver enzymes, neutropenia, thrombocytopenia

Target-independent MTDs*

Selected common platform toxicities across multiple ADCs

*On-target off-tumor exceptions exist

Selected MTDs and targets of auristatin ADCs

ADC clearance generates payload in circulation: ADC is a source of payload

Circulating payload concentrations achieve pharmacologically active levels in humans

ADC and payload PKs in humans

Payload exposure likely to contribute to ADC clinical efficacy:

 Activity in tumors with low antigen expression or no antigen expression

ADC significantly alters payload PK:

- Payload half-life extended from hours (typical small molecule PK) to days
- Elimination of payload is limited by its formation

E. Tarcsa et al. Drug Discov. Today Technol. 2020, 37, 13-22

...but not in preclinical species (even non-human primates!)

Data adapted from: D. Toi et al. Lancet Oncol. 2017, 18, 1512-1522 and H. Habara et al. Biopharm. Drug. Dispos. 2023, 44, 380-384

Contribution of circulating payload is underestimated in all the preclinical models

Exposure of payloads in humans is significantly higher than non-human species

How do ADCs work?

- Efficacy is driven by a complex combination of targeted payload delivery, free payload exposure, and tumor subtype sensitivity.
- Target expression and ADC properties (including linker instabilities) influence sites and rates of ADC disposition, and in turn payload tumor, tissue, and systemic exposures
- ADC linker and payload properties (including linker stability, cleavability, and payload permeability) can influence the bystander effect of ADCs

R. Colombo et al. Cancer Research, 2023, 83(7_Supplement), 1538

Refining the ADC dogma: understanding ADCs to maximize their clinical success

- 1. The therapeutic window dogma:
 - ADCs don't increase the MTD but are more efficacious than small molecules when dosed at or near their MTDs
- 2. The stability dogma:
 - *Right stability is critical to balance efficacy and toxicity.* Unexpected toxicities have emerged when trying to overly stabilize ADCs
- 3. The magic bullet dogma:
 - ADC targeted and non-targeted uptake and linker instabilities contribute to sustained payload concentration at the tumor site

Nuances of ADC properties have a large impact on efficacy and tolerability in patients Therefore, it is important to refine our understanding of ADCs in light of clinical data!

