

TOPO1i ADC Platform From Concept to Pipeline Application

Mark Petersen, Senior Scientist, ADC therapeutic development

October 10th 2023

Festival of Biologics Basel 2023

Nasdaq: ZYME | zymeworks.com

Zymeworks Novel Camptothecin Payload Was Selected With ADCs In Mind

Design of novel payloads enables incorporation of properties tailored for ADC mechanism

Making a Meaningful Difference

مو به م

zymeworks

Platform Design Criteria Draw on Validated ADC Technologies

PAYLOAD

Novel camptothecin with moderate potency and strong bystander activity

- Acknowledges complex mechanisms driving TOPO1i ADC action
- Sufficient tolerability to achieve ADC dose > 5 mg/kg

LINKER

Traceless, plasma-stable, cleavable peptide

- Common to majority of approved ADCs
- Compatible with desired bystander activity

CONJUGATION

Thiol-maleimide chemistry

- Stochastic conjugation utilized in *all* approved ADCs
- Facilitates DAR optimization
- Good balance of stability, safety, and anti-tumor activity

Evaluation of Payloads Enable Selection of Drug-Linker Panel for Conjugation

11 -**TOPO1i** benchmarks ZW TOPO1i payloads Lead ZW payload 10-Exatecan pIC50 (SKBR3) 9 nM Belotecar potency ocan 8 Topotecan tothecin ncreasing 7 DXd2 *n* = ≥2; SD ≤0.3 Increasing hydrophobicity 6-2 -3 -2 -1 0 1 3 LogD 7.4 $pIC50 = -log_{10}(IC50)$ Making a Meaningful Difference

Payload selection driven by potency,

hydrophobicity, and ADME characteristics

Payloads were functionalized using two different linker attachment points

C10 amide

C7 aminal

Zymeworks' Topoisomerase I inhibitor

Evaluation of Payloads and ADCs Enable Selection of Drug-Linker Panel for Extended Characterization

•

Payload selection driven by potency, hydrophobicity, and ADME characteristics

zymeworks

Zymeworks TOPO1i Drug-Linkers Yield ADCs with Desired Physicochemical Properties and Exceptionally Low Aggregation

mAb = trastuzumab conjugation = cysteine DAR = 8

ADCs with Zymeworks TOPO1i DLs:

- No aggregation for DAR8 (*challenge for this class*)
- ✓ Hydrophilic
- Robust freeze thaw stability

*DL = Drug-linker Making a Meaningful Difference CONFIDENTIAL

Zymeworks TOPO1i Drug-Linkers Yield ADCs with Desired Physicochemical Properties and Exceptionally Low Aggregation

mAb = trastuzumab conjugation = cysteine DAR = 8

ADCs with Zymeworks TOPO1i DLs:

- No aggregation for DAR8 (*challenge for this class*)
- ✓ Hydrophilic
- ✓ Robust freeze thaw stability

zymeworks

Increasing hydrophobic character

Payloads Showed Similar Potency to Benchmarks on Multiple Cell Lines

Most ADCs Showed Good Potency and Selectivity

Representative pIC50 in an Ag+ cell line sensitive to TOPO1i ADCs and an Ag- cell line

Strong Bystander Activity for Most Zymeworks TOPO1i ADCs

ADC Plasma Stability Assays Revealed Liabilities for Two Drug-linkers

zymeworks

🗙 doesn't meet design criteria

Most Zymeworks TOPO1i ADCs Resulted in Comparable or Increased Efficacy vs. Benchmark in a JIMT-1 Xenograft Study

zymeworks

Making a Meaningful Difference

12

Most Zymeworks TOPO1i ADCs Resulted in Comparable or Increased zymeworks Efficacy vs. Benchmark in a JIMT-1 Xenograft Study

Most Zymeworks TOPO1i ADCs Resulted in Comparable or Increased zymeworks Efficacy vs. Benchmark in a JIMT-1 Xenograft Study

Four Zymeworks TOPO1i ADCs Were Tolerated at High-Doses in Mice zymeworks

design criteria met (tolerated at 200 mg/kg)
 design criteria not met (not tolerated at 200 and 60 mg/kg)

Top Two TOPO1i ADCs Identified in a Rat Tox Study

zymeworks

- 30, 60 and 200 mg/kg
- IV injection, Q3Wx2
- 6 animals per group

not better than ZW191 mAb-MC-GGFG-CXN523

design criteria not met

Top Two TOPO1i ADCs Identified in a Rat Tox Study

Two Dose NHP ADC Toxicity Study Support the Selection of MC-GGFG-AM-CXN519 as Platform Lead Drug-Linker

Group	Test Article	DAR	Dose (mg/kg)	Tolerated?
1	Vehicle	-	-	-
2	mAb-DXd	8	30	Y
3			80	Ν
4	mAb-MC-GGFG- AM-CXN519	4	60	Y
5			120	Υ
6		8	30	Y
7			80	Ν
9	mAb-MC-GGFG- CXN523	4	60	Y
10			120	Ν
11		8	30	Y
12			80	Ν

Zymeworks Novel Camptothecin Payload Was Selected With ADCs In Mind

Design of novel payloads enables incorporation of properties tailored for ADC mechanism

Making a Meaningful Difference

مرجم

zymeworks

ZD06519 Payload is Being Utilized in Multiple Pipeline Programs

	ZW191	ZW220	ZW251
Target	FRα	NaPI2b	GPC3
Format/Technology	Monospecific/TOPO1i ADC	Monospecific/TOPO1i ADC	Monospecific/TOPO1i ADC
Potential Indications	Ovarian cancer, other gynecological cancers, and other solid tumors	Ovarian cancer, NSCLC	Liver cancer
Stage	IND-enabling	IND-enabling	Lead format evaluation
Next Milestone	IND 2024	On track for 2025 IND	On track for 2025 IND

Additional early-stage assets in development

Making a Meaningful Difference CONFIDENTIAL

ZW191, a DAR 8 FRα-Targeting ADC

ZW220, a DAR 4 NaPi2b-Targeting ADC

- ZW220 is more efficacious than Lifatuzumab-vedotin
- DAR 4 ADC is equivalent to DAR 8 ADC in 3/5 models

- Minimal changes in body weight, hematology parameters, and clinical chemistry parameters in all treatment groups.
- No mortality observed in any treatment group prior to necropsy.
- DAR 4 ADC selected for pre-clinical development

ZW251, a Glypican-3-Targeting ADC

- A Single 8 mg/kg dose of either ZW251 DAR 4 or DAR 8 results in robust efficacy.
- DAR 4 ADC is equivalent to DAR 8 ADC in 3/5 models.

- Minimal changes in body weight, hematology parameters, and clinical chemistry parameters in all treatment groups.
- No mortality observed in any treatment group prior to necropsy.

Robust Interrogation Yields Pipeline Ready TOPO1i ADC Platform

From concept to platform:

From platform to pipeline:

Making a Meaningful Difference

Acknowledgments

Medicinal Chemistry

- Raffaele Colombo
- Mark Petersen
- Michael Brant
- Graham Garnett
- Truman Schaefer

Bioconjugation

- Vincent Fung
- Manuel Lasalle
- Samir Das
- Kevin Yin
- Katina Mak
- Meredith Clark
- Chen Fang

Antibody Discovery & Engineering

• Dunja Urosev

Analytics

- Luying Yang
- Tong Ding
- Diego Alonzo
- Cathy Dang
- Wen Zhang
- Rehan Higgins

In vitro Biology

- Andrea Hernandez Rojas
- Jodi Wong
- Araba Sagoe-Wagner
- Lemlem Degefie
- Chi Wing Cheng

In vivo Biology & PK

- Sam Lawn
- Kaylee Wu
- Winnie Cheung
- Riley Matwick

Toxicology

- Sara Hershberger
- Marcie Wood
- Gerry Rowse
 Devia Siddepress
- Daya Siddappa

Research Leadership

- Paul Moore
- Jamie Rich
- Stuart Barnscher

Project Management

• Kari Frantzen

Intellectual Property

• Emma Macfarlane

Business Development

• Lucas Donigian

Portfolio Strategy

- Steve Seredick
- Lisa Mullee

