Revisiting the dogma of antibody drug conjugates (ADCs): Emerging data challenge the benefit of linker stability and the primacy of payload delivery

Raffaele Colombo, Stuart D. Barnscher, Jamie R. Rich ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada

Introduction: revisiting the ADC dogma

ADCs are an important class of targeted therapeutics hailed for their ability to selectively deliver potent drugs directly to cancer cells (thus often referred to as "magic bullets" or "biological missiles") and to significantly improve the therapeutic window of their conjugated drug. These widespread beliefs are not supported by clinical evidence.¹

Nonetheless, ADCs have shown improved efficacy compared to related unconjugated drugs and unrelated standard of care treatments, transforming the way cancer patients are treated.

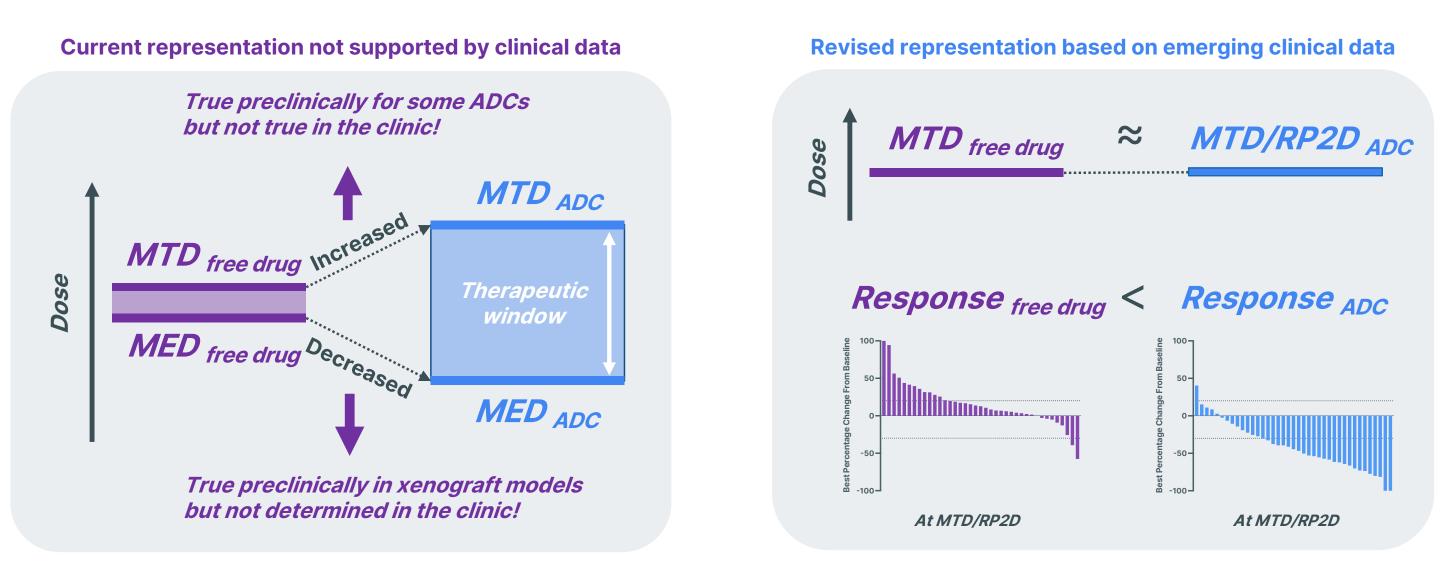


Figure 1. ADCs do not significantly increase the maximum tolerated dose of their conjugated payloads but, when dosed at their MTD or RP2D, they can offer improved efficacy over related unconjugated small molecules.

Herein, we challenge broadly accepted elements of ADC dogma, including the inherent and absolute benefit of linker stability, and the primacy of payload delivery. Although preclinical models generally support these concepts, translation to the clinic is less obvious.

The clinical benefit of approved ADCs is not derived from increased payload dose

Approved ADCs do not achieve a higher MTD or RP2D than other related ADCs or chemotherapies.

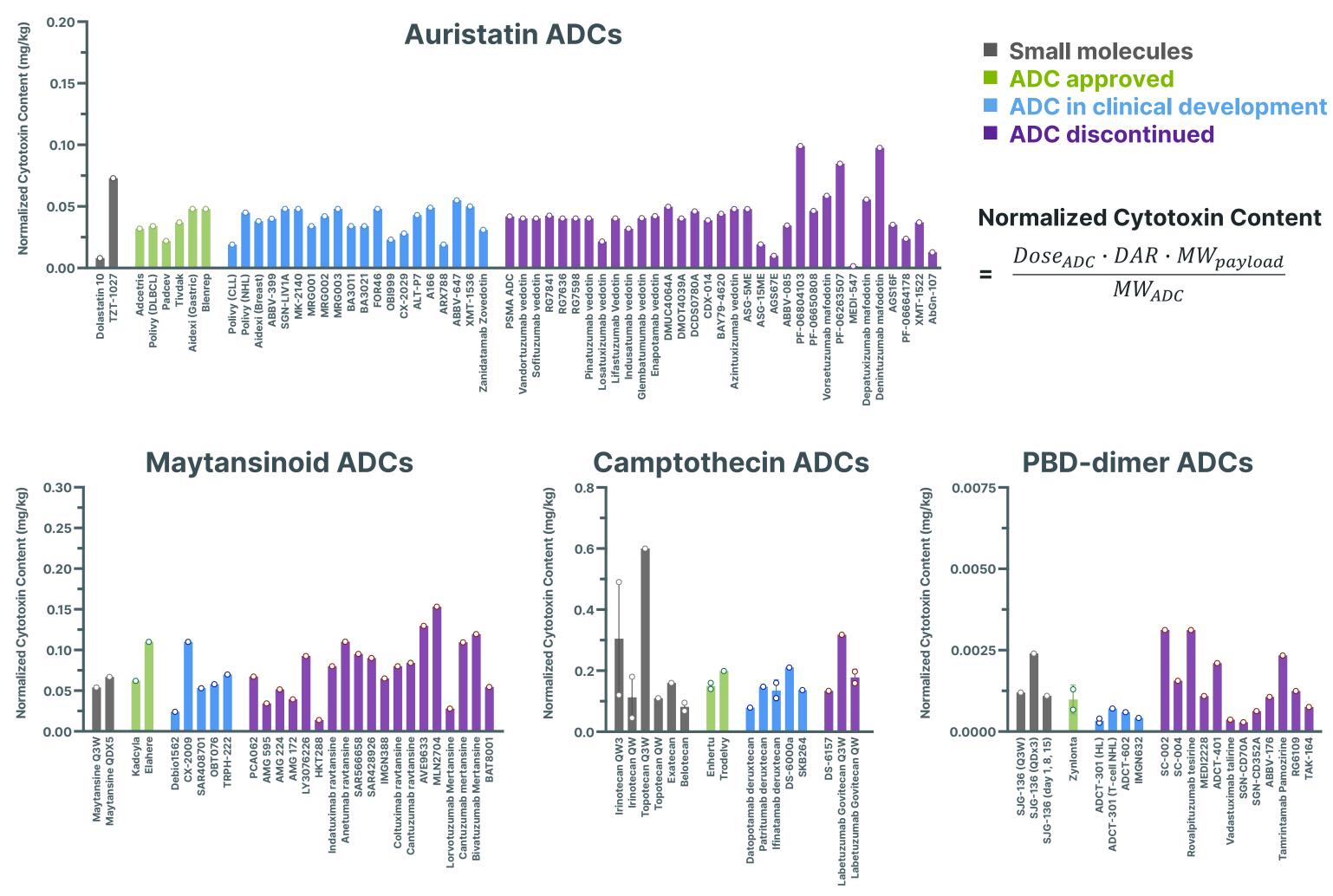


Figure 2. MTD/RP2D doses of small molecules and ADCs (normalized by cytotoxin content). Cut-off: March 2023.

Unresolved questions impact ADC design and development

- Why is the ratio of free payload to ADC exposure substantially higher in humans than in preclinical animal species?
- Why do stable ADCs lead to new toxicities in the clinic and is there a mitigation strategy?
- How do linker instabilities (including albumin exchange) contribute to ADC efficacy and tolerability?

Successful ADCs feature both linker-drug and antibody-linker instability

None of the approved ADCs are completely stable in circulation. conjugated payload (antibody drug conjugate and albumin drug conjugate).

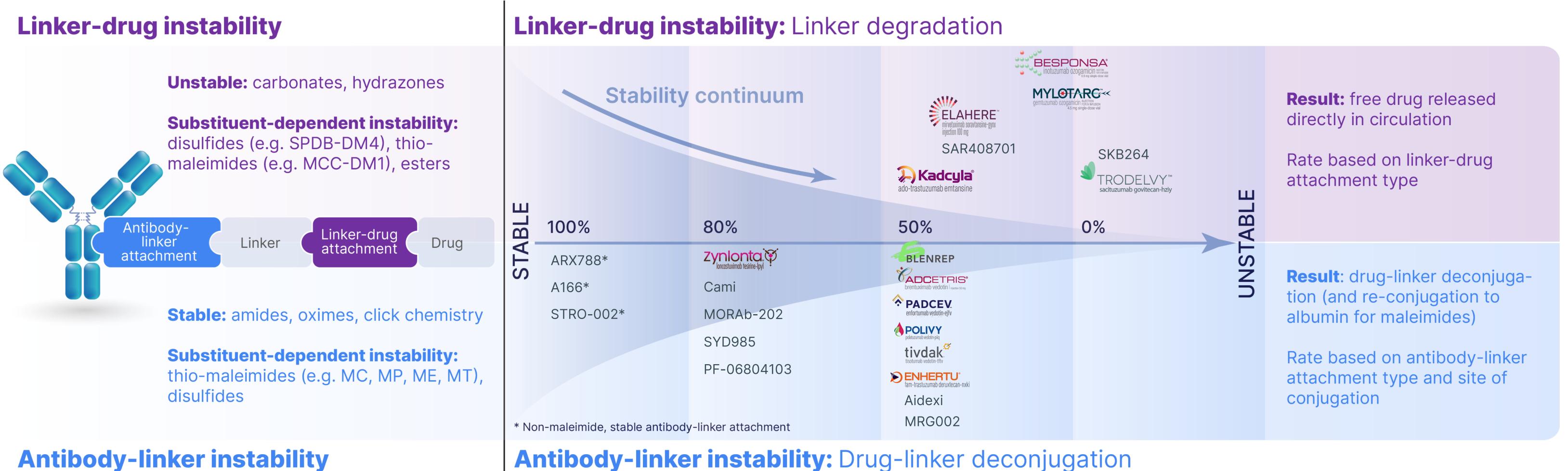


Figure 3. Continuum of ADC stability. Linker degradation and drug-linker deconjugate the antibody and the site of conjugation. Percentages shown in the figure represent the amount of conjugated payload remaining on the antibody in circulation after 7 days compared to the initial conjugated payload, estimated from a combination of internal and literature data.

Enhancing ADC stability is an area of intense focus, but does it really improve clinical outcomes?

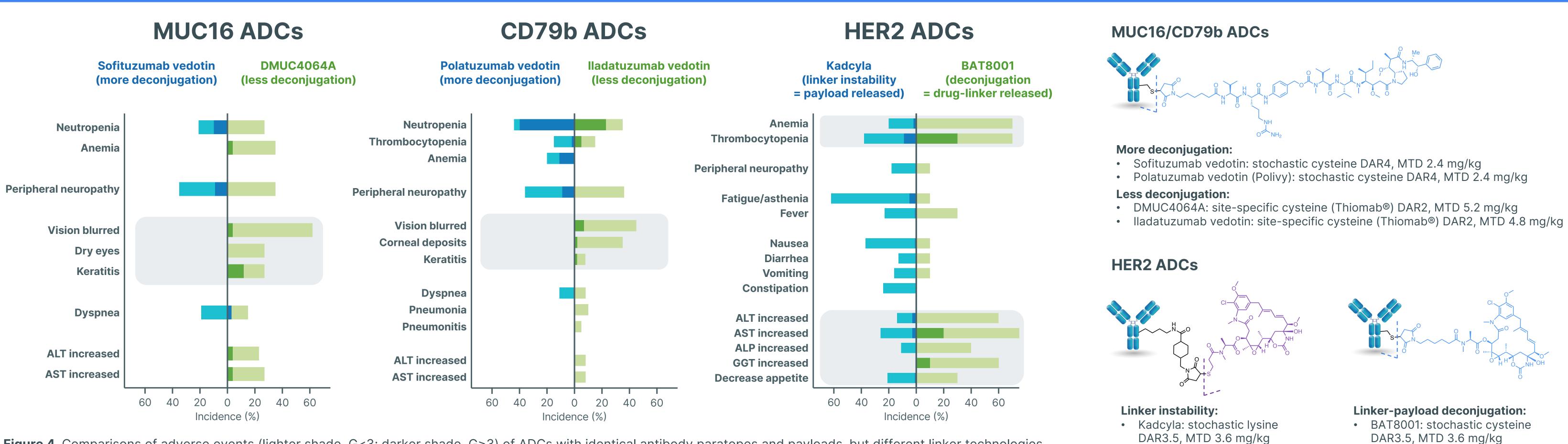


Figure 4. Comparisons of adverse events (lighter shade, G<3; darker shade, G≥3) of ADCs with identical antibody paratopes and payloads, but different linker technologies.

ADCs with higher deconjugation (Aidexi, MRG002), although direct comparisons are complicated by linker and payload differences.

ADC targeted-delivery paradigm overlooks additional anti-tumor mechanisms

ADC	Enhertu	Enhertu	Enhertu	Enhertu	Aidexi	SYD985	Trodelvy	Trodelvy	Tivdak	
Trial #	NCT00679341	NCT04132960	NCT02564900	NCT03734029	NCT02881138 NCT03052634	NCT02277717	NCT02574455	NCT03901339	NCT03438396	
Tumor	BC	BC	BC	BC	BC	BC	TNBC	TNBC	CC	
Target	HER2	HER2	HER2	HER2	HER2	HER2	TROP2	TROP2	TF	
High expression ORR (%) (# of patients) [criteria]	34% (25/74) [IHC 3+]	71% (48/68) [IHC 3+ or ISH+]	63% (97/154) [IHC 3+]	NA	43% (9/21) [IHC 3+]	33% (16/48) [IHC 3+]	44% (37/85) [H-score >200]	23%	29%	
Medium expression ORR (%) (# of patients) [criteria]		38%	46% (13/28) [IHC 2+ and ISH+]	57% (90/159) [IHC 2+]	43% (15/35) [IHC 2+]	40% (6/15) [IHC 2+ or 1+ and HR-]	38% (15/39) [H-score 100-200]	(33/142) [H-score ≥100]	(11/38) [H-score ≥120]	
Low expression ORR (%) (# of patients) [criteria]	5% (1/21) [IHC 2+ or 1+ or 0]	(27/72) [IHC 2+ or 1+]	NA	49% (105/214) [IHC 1+]	31% (4/13) [IHC 1+]	(9/32) [IHC 2+ or 1+ and HR+]	22% (6/27) [H-score	18% (11/62) [H-score 10-100]	24% (9/38) [H-score	
No expression ORR (%) (# of patients) [criteria]		30% (11/37) [IHC 0]	NA	NA	NA	NA	<100]	24% (8/34) [H-score ≤10]	<120]	

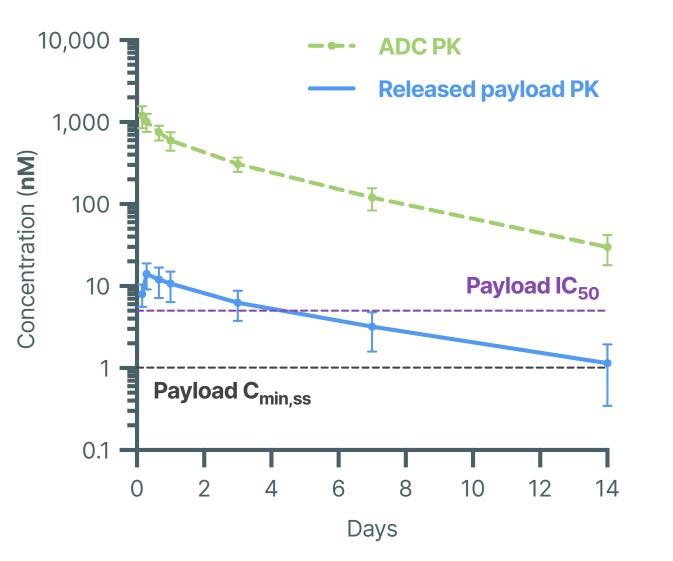
Anti-tumor response selected ADCs reveal

- Best response rat achieved in patier higher antigen expr
- Many ADCs work antigen-low or null patients, high concomitant mecl in addition to payload delivery.

Table 1. Overall response rates for different approved ADCs in patients with different target expression levels. See QR code at the top right for a comprehensive analysis.

ADC instability driven by linker degradation and drug-linker deconjugation influence exposure of both unconjugated (free payload) and

• Several HER2-targeting auristatin ADCs with limited deconjugation (e.g. ARX788, A166, PF-06804103) feature new toxicities compared to


ates for	Analyt	es	(Payload A	AUC (%) AUC/Total mAb	AUC*100)	C _{max} (%) (Payload C _{max} /Total mAb C _{max} *100)							
that: ates are	ADC	Payload or payload metabolite	Humans	Monkeys	Rats (*Rabbits)	Humans	Monkeys	Rats (*Rabbits)					
	Multiple vedotin ADCs	MMAE	5-13%	0.02-0.10%	0.01-0.10%	2-3%	0.01-0.03%	0.04-0.05%					
nts with	Enhertu	DXd	1.3%	0.06%	0.04%	1.8%	0.10%	0.06%					
ression.	Flohara	DM4	0.5%	0.06%	0.02%*	0.6%	0.07%	0.12%*					
well in	Elahere	S-Me-DM4	1.7%	BLQ	0.002%*	1.0%	NA	0.01%*					
antigen- lighting	Table 2. Payload AUC and C_{max} expressed as percentage of total antibody AUC and C_{max} in differentspecies for approved ADCs. See QR code at top right for a comprehensive analysis.												
nanisms	Intrinsic ADC stability is similar across species, yet we have												
argeted	identified that serum payload exposures (as a percentage												
	of ADC ex	(posure) a	are si	anifica	ntlv h	iaher	in hu	mans					
	of ADC exposure) are significantly higher in humans, highlighting species-specific dependency in ADC and												

payload metabolism and disposition.

AACR Annual Meeting 2023 Abstract #1538

Circulating free payload concentrations often achieve pharmacologically active levels in humans

- ADCs with moderate druglinker stability benefit from both targeted and untargeted mechanisms.
- ADCs with stable drug-linkers rely instead on full ADC catabolism to release the active payload.

Figure 5. Example of typical exposures of an ADC and its released payload in plasma compared to payload $C_{min,ss}$ and cell-based payload IC₅₀. See Tarcsa et al. for further discussion.²

ADC stability impacts payload disposition and the premise of payload delivery

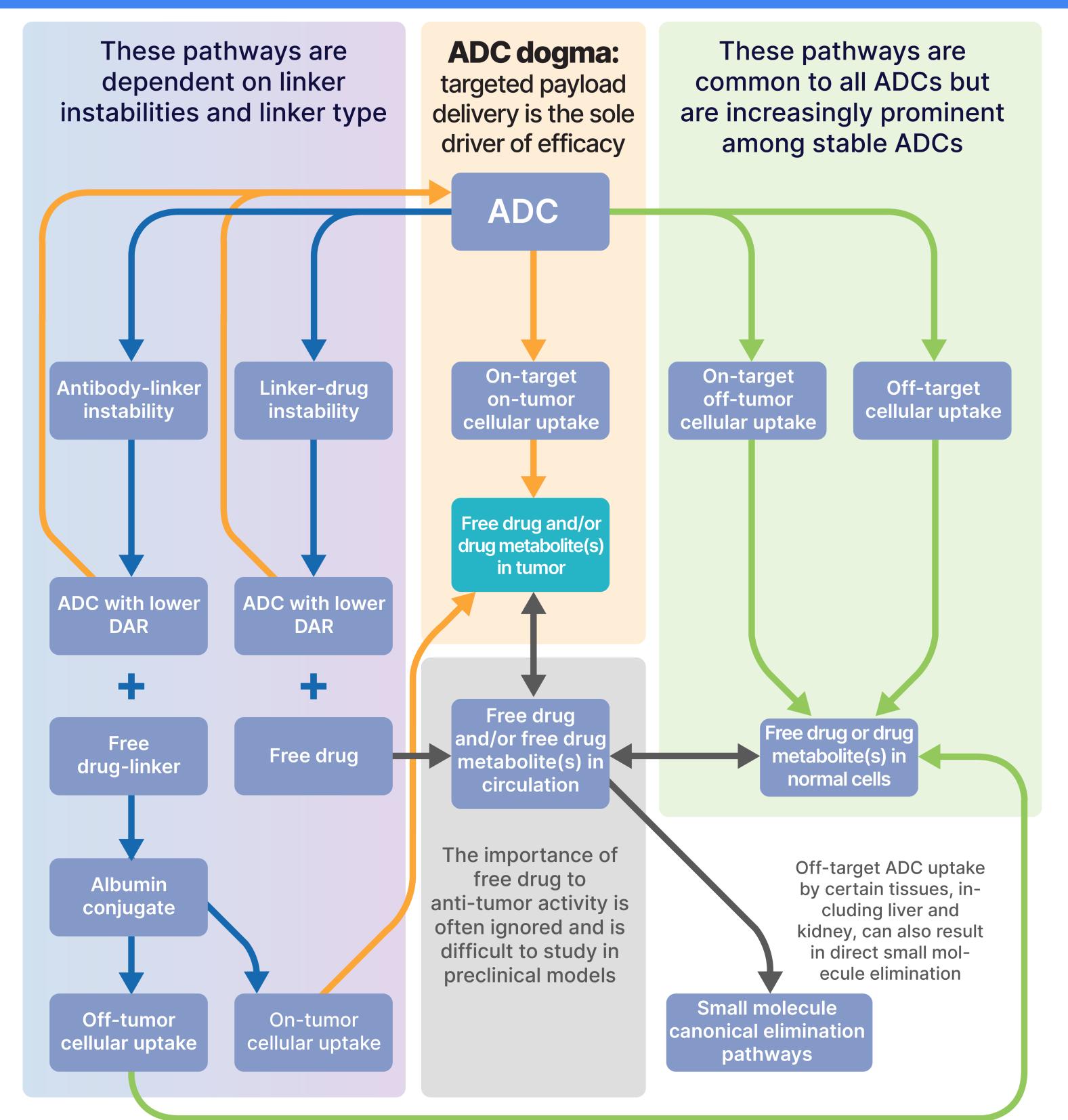


Figure 6. The complex disposition of an ADC and its catabolites: ADC properties, including antibody-linker and linkerdrug instabilities, influence the fate of each ADC.

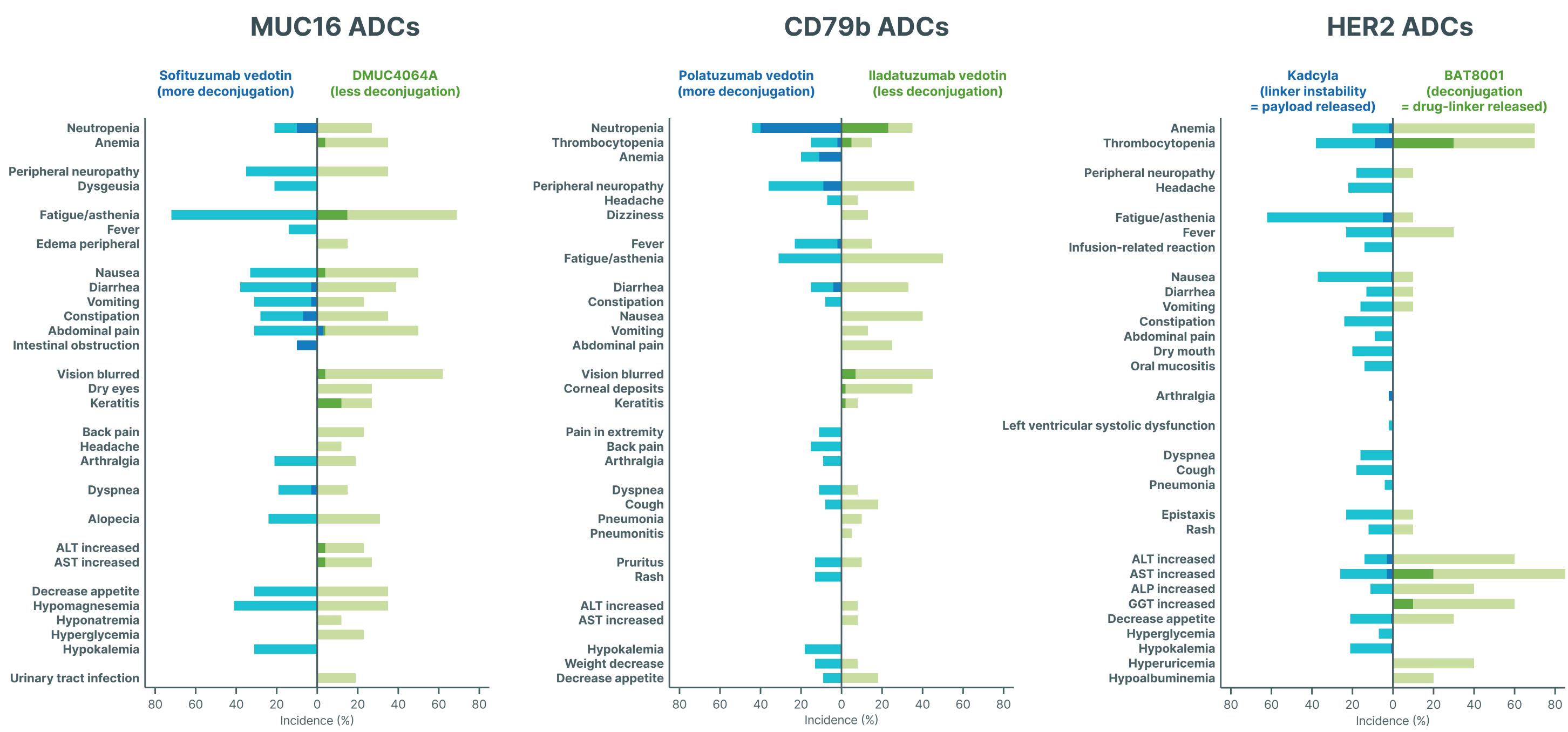
- It is estimated that <1% of injected therapeutic antibodies reaches tumors in humans, highlighting the need to contemplate additional mechanisms.
- ADC efficacy is likely driven by a complex combination of targeted payload delivery, free payload exposure, and tumor subtype sensitivity.
- Drug-linker instabilities and target expression influence sites and rates of ADC disposition, and in turn payload tumor, tissue, and systemic exposures.
- Preclinical models do not accurately recapitulate the effects of linker instabilities (degradation or deconjugation) in the clinic and may overemphasize the benefit of stable ADCs.
- Unexpected toxicities caused by antibody conjugated payload are apparent with more stable ADC conjugation technologies.

of the current clinical landscape. Drug Discov Today Technol. 2020, 37, 13-22

References Colombo R, Rich JR. The therapeutic window of antibody drug conjugates: A dogma in need of revision. *Cancer Cell.* 2022, 40, 1255-1263.
Tarcsa E, Guffroy MR, Falahatpisheh H, Phipps C, Kalvass JC. Antibody-drug conjugates as targeted therapies: Are we there yet? A critical review

Revisiting the dogma of antibody drug conjugates (ADCs): Emerging data challenge the benefit of linker stability and the primacy of payload delivery

Raffaele Colombo, Stuart D. Barnscher, Jamie R. Rich ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC, Canada


Extended tables and figures

	T-DM1	T-DM1	T-DM1	T-DXd	T-DXd	T-DXd	T-DXd	T-DXd	T-DXd	T-DXd	T-DXd	T-DXd	RC48	RC48	SYD985	SG	SG	SG	SKB264	HER3-DXd	UpRi	STRO-002	STRO-002	Mirv	Mirv	ABBV-647	ABBV-647	ABBV-647	TV	TV
Trial #	NCT00679 341	NCT00509 769	NCT02289 833	NCT04132 960	NCT02564 900	NCT02564 900	NCT03734 029	NCCHE, Kashiwa, Japan	NCT03329 690	NCT03505 710	NCT03384 940	UMIN0000 29506	NCT02881 138 and NCT03052 634	NCT04073	NCT02277 717	NCT01631 552	NCT02574 455	NCT03901 339	NCT04152 499	NCT03260 491	NCT03319 628	NCT03748 186	NCT03748 186	NCT01609 556	NCT02631 876	NCT04189 614	NCT04189 614	NCT04189 614	NCT02001 623	NCT03438 396
Tumor	BC	BC	NSCLC	BC	BC	BC	BC	BC	GC	NSCLC	CRC	UCS	BC	mUC	BC	NSCLC	TNBC	TNBC	TNBC	NSCLC	OC	OC	OC	OC	OC	NSCLC	TNBC	OC	CC	CC
Target	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	HER2	TROP2	TROP2	TROP2	TROP2	HER3	NaPi2b	FRα	FRα	FRα	FRα	PTK7	PTK7	PTK7	TF	TF
High expression	34%	41%	20%	71%	63%			50%	41%	20%	58%		43%	60%	33%	11%	44%		55%	50%		44%	40%	27%	29%	50%	33%	44%		
ORR (%) (# of patients)	(25/74) [IHC 3+]	(33/80) [IHC 3+]	(4/20) [IHC 3+]	(48/68) [IHC 3+ or ISH+]	(97/154)		NA	(5/10) [IHC 3+]	(52/126) [IHC 3+]		(23/40) [IHC 3+]		(9/21) [IHC 3+]	(12/20) [IHC 3+]	(16/48) [IHC 3+]	(2/19) [IHC 3+]	(37/85) [H-score >200]		(16/29) [H-score ≥200]			(7/16) [TPS >75]	(8/20) [TPS >75]	(6/22) [PS2+ ≥75]	(34/116) [PS2+ ≥75]		(2/6) [H-score >210]			
[criteria]					46%						8%	53% (12/22)			40%			23%			35%								21%	29%
Medium expression			0%		(13/28) [IHC 2+ and ISH+]	39%	57%		33%	26%	(1/13) [IHC 2+ and ISH+]	[IHC 3+ or 2+]	43%	40%	(6/15) [IHC 2+ or	40%	38%	(33/142) [H-score ≥100]		50%	(13/37) [TPS ≥75]	33%	33%	29%	28%	0%	14%	27%	(5/24) [H-score ≥120]	(11/38) [H-score ≥120]
ORR (%) (# of patients)			(0/29) [IHC 2+]	38%		_	(90/159) [IHC 2+]	73%	(7/21) [IHC 2+]	(10/39) [IHC 2+]	0%		(15/35) [IHC 2+]	(8/20) [IHC 2+]	1+ and HR-]	(2/5) [IHC 2+]	(15/39) [H-score 100-200]			(7/14) [H-score 100-199]		(1/3) [TPS 50- 75]	(4/12) [TPS 25- 75]		(29/103) [PS2+ 50- 75]		(1/7) (H-score 110-210)			
[criteria]	5%	20%		(27/72) [IHC 2+ or	NA			(8/11) [IHC 2+ or			(0/15) [IHC 2+ and ISH-]				and				23%					, 91						
Low expression	(1/21) [IHC 2+,			1+]		36%	49%	- 1+]	18%		0%	70%	31%		28% (9/32)	0%		18%	(6/26) [H-score			33%		25%	16%					
ORR (%) (# of patients)	1+, or 0]	1+, or 0]	NA		NA	(10/28) [IHC 1+]	(105/214) [IHC 1+]		(4/22) [IHC 1+]	NA	(0/18) [IHC 1+]	(7/10) [IHC 1+]	(4/13) [IHC 1+]	25%	[IHC 2+ or 1+ and HR+]	(0/1) [IHC 1+]	22%	(11/62) [H-score 10-100]	<200]	14%	9%	(2/6) [TPS 25- 50]	11%	(2/8) [PS2+ 25- 50]	(18/114) [PS2+ ≤50 and	17%	0%	20%	30%	24%
[criteria] No expression				30%*										(2/8) [IHC 1+ or		0%	(6/27) [H-score <100]	24%		(1/7) [H-score <100]	(2/22) [TPS <75]		(1/9) [TPS ≤25]		TPS>50]	(1/6) [H-score <120]	(0/5) [H-score <110]	(2/11) [H-score <50]	(6/20) [H-score <120]	(9/38) [H-score <120]
ORR (%) (# of patients) [criteria]			NA	(11/37) [IHC 0]	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	NA	(0/1) [IHC 0]		(8/34) [H-score ≤10]		~100]		(1/8) [TPS ≤25]		NA	NA	~120]			\120]	

Extended Table 1. Overall response rates for different approved ADCs in patients with different target expression levels.

		(Payload	AUC (%) AUC/Total mAb Al	JC*100)	Cmax (%) (Payload Cmax/Total mAb Cmax*100)					
		Humans	Monkeys	Rats (*Rabbits)	Humans	Monkeys	Rats (*Rabbits)			
Adcetris	MMAE	4.6%	0.04%	0.1%	2.8%	0.03%	0.04%			
Aidexi	MMAE	9.5%	0.10%		2.3%	0.03%				
Tivdak	MMAE	4.8%	0.08%		3.0%	0.03%				
Padcev	MMAE	13%	0.05%	0.13%	3.2%	0.02%	0.05%			
Polivy	MMAE	5.8%	0.015%	0.014%	3.2%	0.01%				
Enhertu	DXd	1.3%	0.06%	0.04%	1.8%	0.1%	0.06%			
Kadcyla	DM1	1.3% (Chinese) NA (Western) 0.21% (Japanese)	0.12%	0.21%	3.5% (Chinese) 1.3% (Western) 0.9% (Japanese)	1.1%	1.1%			
Elahere	DM4	0.5%	0.06%	0.02%*	0.6%	0.07%	0.12%*			
Elahere	S-Me-DM4	1.7%	BLQ	0.0016%*	1.0%	NA	0.01%*			
Trodelvy	SN-38	2.1% (27% of total ADC)	3.9%		16%	9%				
Trodelvy	SN-38-G	0.6% (7% of total ADC)	NA		2.3%	NA				
Blenrep	Cys-MC-MMAF	0.3%	0.3%	0.4%	0.3%	0.4%	0.3%			
Zynlonta	SG3199	0.02%			0.4%	0.2%				

Extended Table 2. Payload AUC and C_{max} expressed as percentage of total antibody AUC and C_{max} in different species for approved ADCs.

Extended Figure 4. Comparisons of adverse events (lighter shade, G≥3) of ADCs with identical antibody paratopes and payloads, but different linker technologies.

AACR Annual Meeting 2023 Poster #1538

