

## **ZW191**

A Potential Best-in-Class TOPO1i ADC for Treatment of FRα-Expressing Solid Tumors

Sam Lawn, Senior Scientist & Group Lead, In Vivo Biology & PK

March 16th 2023

World ADC London 2023

## **ZW191: Folate Receptor Alpha Topoisomerase-1 Inhibitor ADC**



Target

- Folate receptor alpha (FRα, FOLR1) is a clinically validated ADC target
- FRα is over-expressed on the cell surface of ovarian cancer, other gynecological cancers, and additional solid tumors with unmet medical need

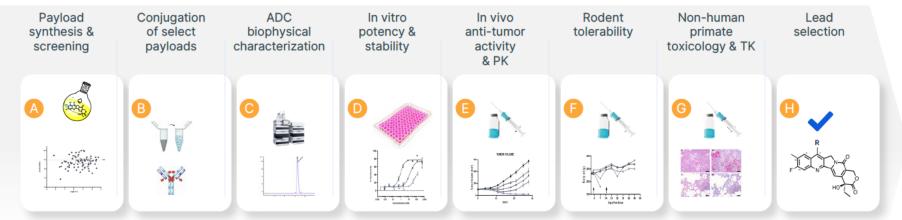


Antibody

- Internally discovered, novel IgG1 monospecific antibody
- Optimal internalization, payload delivery and tumor penetration

Drug Linker

- Novel bystander-active topoisomerase-1 inhibitor
- Cysteine conjugated, DAR8, protease cleavable, traceless drug-linker


Status

- Compelling activity and tolerability profile
- GMP process development underway

### **Robust Interrogation Yields Pipeline Ready Topoisomerase ADC Platform**

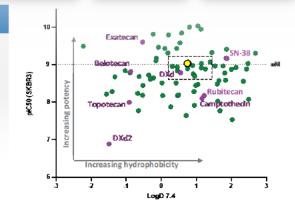


#### From concept to platform



### Robust Interrogation Yields Pipeline Ready Topoisomerase ADC Platform




#### From concept to platform

Payload Conjugation ADC In vitro In vivo Rodent Non-human Lead of select biophysical tolerability selection synthesis & potency & anti-tumor primate screening payloads characterization stability activity toxicology & TK & PK

#### **PAYLOAD**

Novel camptothecin with moderate potency and strong bystander activity

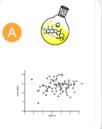
- Acknowledges complex mechanisms driving TOPO1i ADC action
- Sufficient tolerability to achieve ADC dose > 5 mg/kg



### **Robust Interrogation Yields Pipeline Ready Topoisomerase ADC Platform**

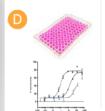


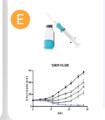
#### From concept to platform


Payload synthesis & screening Conjugation of select payloads

ADC biophysical characterization

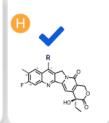
In vitro potency & stability


In vivo anti-tumor activity & PK Rodent tolerability Non-human primate toxicology & TK


Lead selection









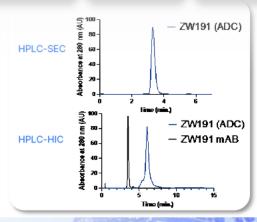









#### LINKER


## Traceless, plasma-stable, cleavable peptide

- Common to majority of approved ADCs
- Compatible with desired bystander activity

#### **CONJUGATION**

#### Thiol-maleimide chemistry

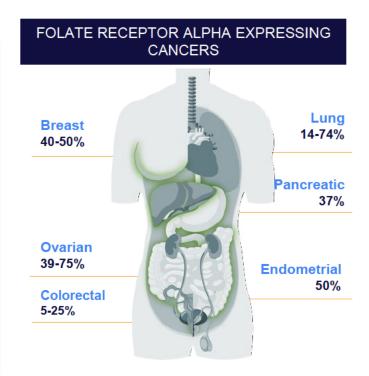
- Stochastic conjugation utilized in all approved ADCs
- · Facilitates DAR optimization
- Good balance of stability, safety, and anti-tumor activity



## From Platform to Pipeline






3 Pipeline programs ZW191, ZW220, ZW251 Additional early-stage assets

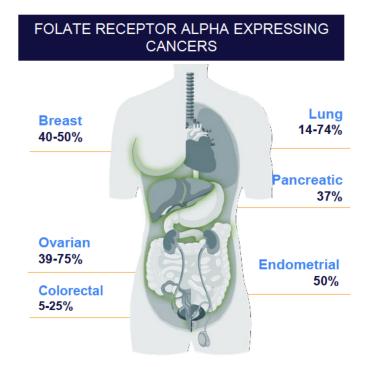


## Folate Receptor Alpha is a Relevant and Exploitable Target in Cancer



| Structure                      | Glycosylphosphatidylinositol (GPI)-anchored membrane protein                                                                |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Normal<br>Tissue<br>Expression | Apical surfaces of tissues including, intestine, lung, Fallopian tube, placenta, choroid plexus. Luminal surface of kidney. |
| Cancer<br>Tissue<br>Expression | Elevated expression in numerous gynecological cancers including ovarian, and in NSCLC, TNBC.                                |
| Ligands                        | Folate                                                                                                                      |
| Function                       | Internalization of folate via endocytosis                                                                                   |




Expression levels cited from multiple sources including: Senol S et al 2015; Ayada et al. Med Mol Morphol 2018; Oza AM SGO 2021; O'Shannessy DJ et al Oncotarget 2012; Nunez MI et al 2012; D'Angelica et al. Mod Path 2011; Nature Review: Clinical Oncology; Vol. 17 June 2020.

## Folate Receptor Alpha is a Relevant and Exploitable Target in Cancer



Elahere approval validates  $FR\alpha$  as an ADC target, bringing benefit to patients, but with multiple points for improvement and expansion

|                 | Mirvetuximab<br>Soravtansine | Potential for ZW191                    |
|-----------------|------------------------------|----------------------------------------|
| Indication:     | Ovarian                      | Ovarian, NSCLC, Breast,<br>Endometrial |
| FRα expression: | High (36%)                   | High, Mid, Low (~80%)                  |
| Efficacy:       | 32% ORR                      | ↑ ORR, ↑ DOR                           |
| Tolerability:   | Ocular tox                   | Improved                               |



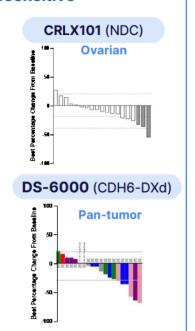
Expression levels cited from multiple sources including: Senol S et al 2015; Ayada et al. Med Mol Morphol 2018; Oza AM SGO 2021; O'Shannessy DJ et al Oncotarget 2012; Nunez MI et al 2012; D'Angelica et al. Mod Path 2011; Nature Review: Clinical Oncology; Vol. 17 June 2020.

### Topoisomerase 1 Inhibitor ADCs have Potential for Significant Impact in FRα-Expressing Cancers

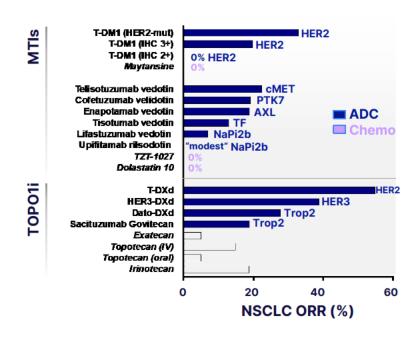


#### **Ovarian Cancer is Chemosensitive**

#### Various drug classes are active in OvCa


- Alkylating agents
- DNA cross-linking agents
- · Microtubule inhibitors
- Topoisomerase inhibitors
- Antimetabolites
- · PARP inhibitors

#### ADCs have validated efficacy in OvCa









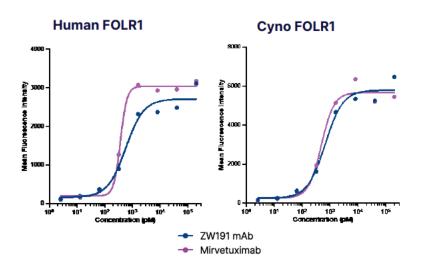

#### **NSCLC: TOPO1i MoA Demonstrates Superior Activity**



Ovarian cancer and NSCLC respond to ADCs and Topoisomerase 1 inhibition

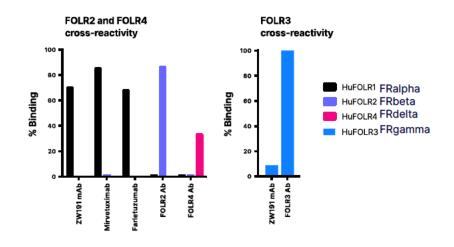
## **ZW191 Novel mAb Discovery and Engineering**








# ZW191 Binds with High Specificity to Human FRα and Cross-Reacts with Cyno FRα




#### **Human and Cyno FRα Cross Reactivity**



ZW191 retains strong binding across human and cyno monkey FRα

## ZW191 mAb does not show cross-reactivity to other FOLR family members FOLR2, FOLR3 and FOLR4



- Left: Binding to HEK293 Hu FOLR1, FOLR2 and FOLR4 transients
- · Right: Binding to soluble Hu FOLR3 by ELISA

## ZW191 mAb Binds with High Specificity to FRa

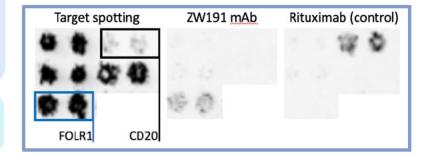






Library screen



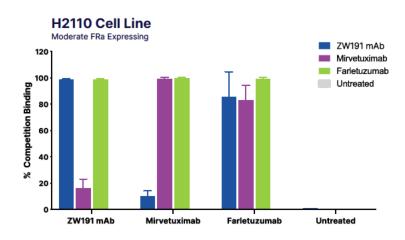

Fixed confirmation screen



- Test molecule screened (as part of a pooled multiplex)
- Full library of 6,200+ plasma membrane, secreted and cell-tethered secreted proteins, ~400 heterodimers
- Fixed HEK293 cell microarray format
- · 'Library hits' identified
- Repeat specificity on hits
- Fixed cell microarray format

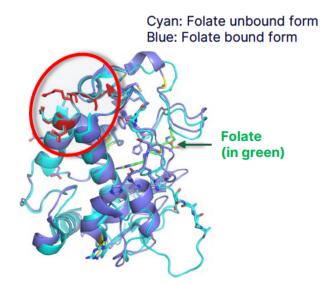


Live cell microarray format



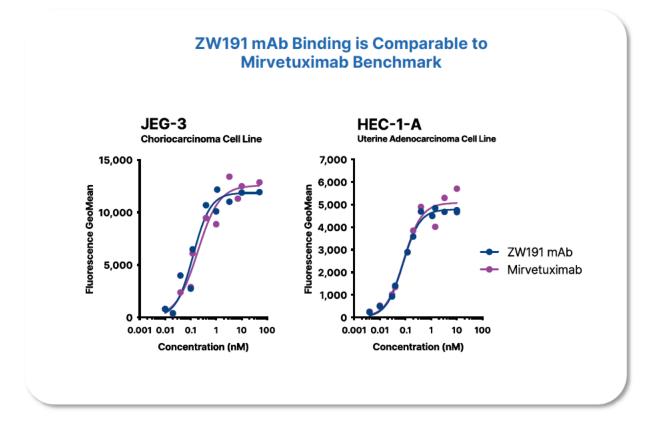

FRα identified as the only significant target for ZW191 mAb

## **ZW191 Exhibits Distinct FRa Binding Properties**




## ZW191 mAb demonstrates a binding profile distinct from clinical benchmark ADC mAbs

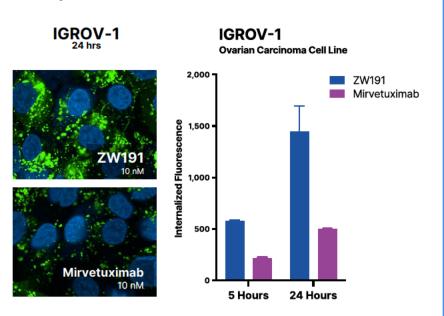



- ZW191 mAb is non-competitive with Mirvetuximab for FRα binding
- ZW191 and Mirvetuximab compete with Farletuzumab for FRα binding

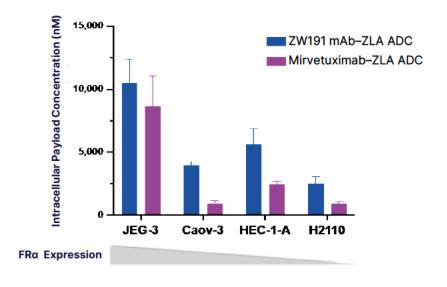
#### ZW191 epitope unaffected by folate binding



## **ZW191 mAb Exhibits Strong Binding to FRα-Expressing Cells**







## **ZW191 Demonstrates Effective Internalization and Payload Delivery**

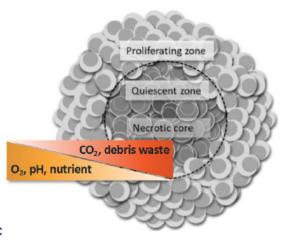


#### **Superior Internalization to Mirvetuximab**



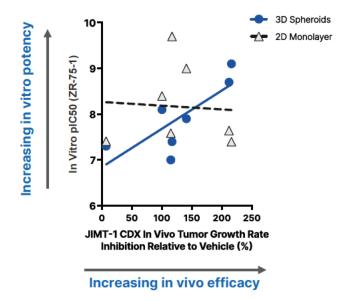
#### **Superior Payload Delivery to Mirvetuximab**




Payload delivery study utilizes ZymeLink Auristatin (ZLA) payload

# Tumor Spheroids are an Informative Model to Assess Antibody Distribution and ADC Cytotoxicity



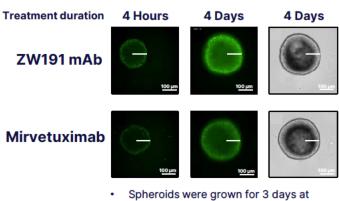

#### **Key spheroid features:**

- · Spatial organization
- Layers of distinct cell populations
- Formation of different gradients from outer to inner regions
- More complex cell signaling
- Potential to recapitulate drug distribution, resistance and metabolic adaptation



Adapted from: Pinto B, Henriques AC, Silva PMA, Bousbaa H. Pharmaceutics. 2020, 12, 1186

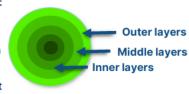
#### 3D Spheroid Cytotoxicity Better Predicts In Vivo ADC Activity Than 2D Cytotoxicity:



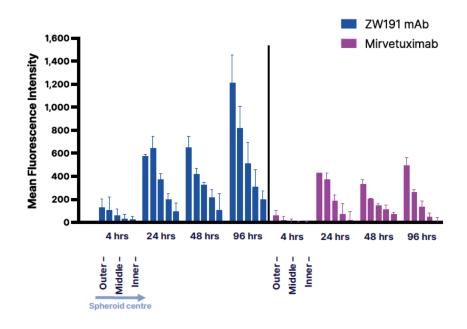

## **ZW191 Demonstrates Effective Tumor Spheroid Penetration**



#### **JEG-3 Tumor Spheroids**


~1,100,000 FRa/cell



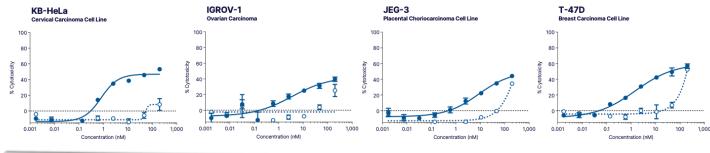

37°C prior to test article treatment

#### Spheroid penetration analysis:

- Central spheroid section selected using Z-stack microscopy
- Fluorescence measured in multiple outer, middle and inner layers of spheroid section using high content imaging



#### Fluorescence Intensity in JEG-3 Tumor Spheroids

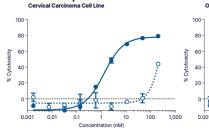



# ZW191 Demonstrates Strong Target-dependent Potency in a Range of FRα-expressing Tumor Cell Lines from Different Cancer Indications

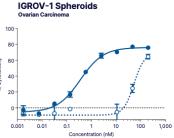


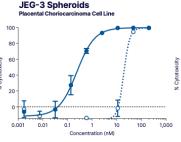


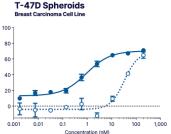
ZW191Isotype ZW TOPO1i ADC




**FRa Expression** 


#### **3D Spheroids**


**→** ZW191

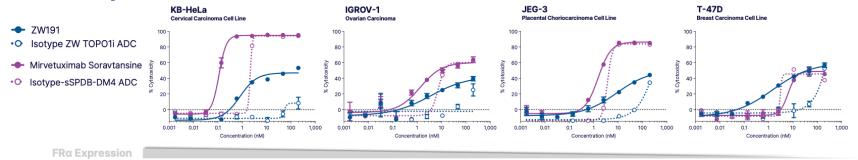

Isotype ZW TOPO1i ADC

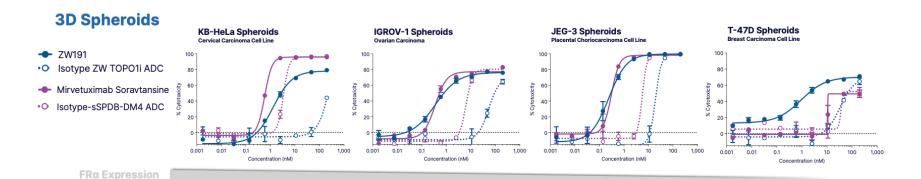


**KB-HeLa Spheroids** 







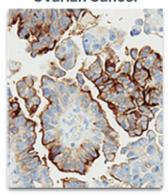


**FR** Expression

# ZW191 Demonstrates Strong Target-dependent Potency in a Range of FRα-expressing Tumor Cell Lines from Different Cancer Indications



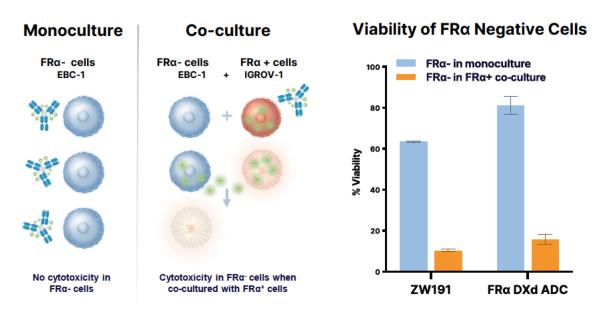
#### **2D Monolayer**






## **ZW191 Exhibits Strong Bystander Activity In Vitro**



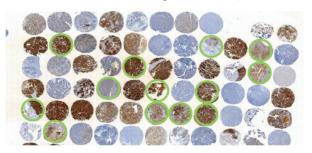

#### FRα Heterogeneity

#### **Ovarian Cancer**

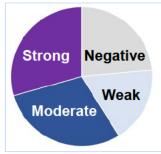


IHC images sourced from Martin et al. 2017. Gynecologic Oncology

#### **ZW191 Bystander Activity in In Vitro Tumor Cell Co-culture Assay**




DXd control ADC contains same mAb as ZW191, conjugated to DXd


### Ovarian PDX Models were Selected across a Range of FRa Expression



#### **PDX TMA FRα Expression (IHC)**



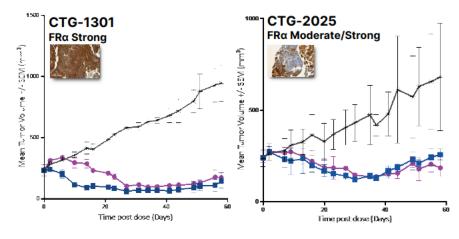
#### Breakdown of FRα Expression in PDX TMA

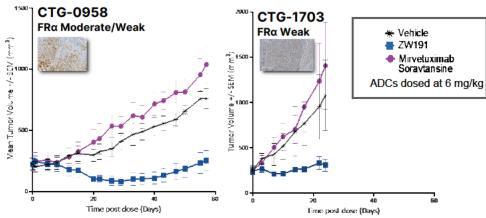


- Strong and moderate expression models prioritized
- ✓ Weak model also evaluated

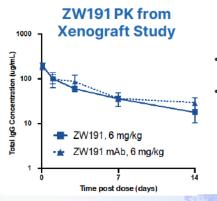
IHC uses a research level assay, independent from validated FOLR1-2.1 Ventana assay

## Ovarian Cancer PDX Models Selected


| Model | FRa Expression  |
|-------|-----------------|
| 0703  | Strong          |
| 1301  | Strong          |
| 2733  | Strong          |
| 2025  | Moderate/strong |
| 3416  | Moderate        |
| 3331  | Moderate        |
| 2299  | Moderate        |
| 3383  | Moderate        |
| 0947  | Moderate        |
| 0958  | Moderate/weak   |
| 3718  | Moderate/weak   |
| 1602  | Weak            |
| 1703  | Weak            |


#### **Study Design**

| Test Article                 | Single Dose<br>(mg/kg) | n |
|------------------------------|------------------------|---|
| Vehicle                      | N/A                    | 3 |
| ZW191                        | 6                      | 3 |
| Mirvetuximab<br>Soravtansine | 6                      | 3 |


# ZW191 Demonstrates Efficacy across a Range of FRα-Expressing Ovarian Cancer PDX







- ZW191 is highly efficacious in models with strong FRα expression, similar to Mirvetuximab Soravtansine
- ZW191 is highly efficacious in models with weaker FRα expression, superior to Mirvetuximab Soravtansine



- 6 mg/kg dose and exposure projected to be clinically relevant
- ZW191 maintains the favorable PK profile of its mAb

IHC is from archive PDX samples using a research level assay, independent from validated FOLR1-2.1 Ventana assay

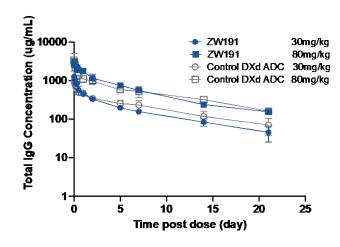
#### **ZW191** is Well-tolerated in Rodent & Non-human Primates



Non-antigen binding species:

Rats + mice: Tolerated at 200 mg/kg

• Antigen-binding species:


NHP: Tolerated at 30 mg/kg

#### ZW191 demonstrates a favorable tolerability profile

| Two-dose (Q3W) Non-Human Primate non-GLP Toxicology Study |               |            |                                                                                                                 |  |  |
|-----------------------------------------------------------|---------------|------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Test<br>Article                                           | Dose<br>mg/kg | Tolerated? | Histopath; Clin. Chemistry; Hematology                                                                          |  |  |
| ZW191                                                     | 30            | Yes        | Thymus, stomach; AST ↑; BUN ↑; ABRETIC↓                                                                         |  |  |
|                                                           | 80            | No         | Thymus, kidney, testis, and brain; AST $\uparrow$ ; BUN $\uparrow$ ; ABRETIC $\downarrow$ ; ABLYMP $\downarrow$ |  |  |
| ZW<br>DAR4 ADC                                            | 120           | Yes        | Thymus, adrenal glands, prostate, brain, lymph nodes; $ABRETIC \! \downarrow \! ; ABNEUT  \downarrow$           |  |  |

No increased severity or distinct adverse effects compared to control DXd ADC

#### **ZW191 PK is comparable to control DXd ADC**



## **ZW191: A Differentiated FRα Targeting ADC**

**zyme**works

Development underway and on track for 2024 IND



#### Therapeutic Rationale

FRα is a clinically validated ADC target in ovarian cancer with good potential in other gynecological and solid tumors.

Topoisomerase-1 inhibition is a clinically validated MOA in ovarian cancer and other solid tumors

#### **Product Differentiation**

**Compelling** internalization, payload delivery, tumor penetration and antitumor activity

Novel topoisomerase-1 inhibitor likely to provide a differentiated safety profile compared to MIRV and STRO-002

#### Opportunity

Potential best-in-class opportunity to improve over MIRV in  $FR\alpha$ -high ovarian cancer

Potential first and best-in-class opportunity in FR $\alpha$ -high endometrial, NSCLC, TNBC, and FR $\alpha$ -mid/low solid tumors

#### **Next Milestones**

**GMP** process development underway

GLP toxicology study scheduled

**IND** 2024

## **Acknowledgments**



#### **Medicinal Chemistry**

- · Raffaele Colombo
- Mark Petersen
- Michael Brant
- Graham Garnett
- Truman Schaefer

#### **Bioconjugation**

- · Vincent Fung
- Manuel Lasalle
- Samir Das
- Kevin Yin
- Katina Mak
- Meredith Clark
- · Chen Fang

#### **Analytics**

- Luying Yang
- Tong Ding
- Diego Alonzo
- · Cathy Dang
- · Wen Zhang
- Rehan Higgins

#### **In vitro Biology**

- Andrea Hernandez
- · Jodi Wong
- Araba Sagoe-Wagner
- Lemlem Degefie
- Chi Weng Cheng
- Peter Chan

## **Antibody Discovery & Engineering**

- Dunja Urosev
- Gesa Volkers
- Desmond Lau
- Discovery team

#### In vivo Biology & PK

- Sam Lawn
- Kaylee Wu
- Winnie Cheung

#### **Toxicology**

- · Sara Hershberger
- Marcie Wood
- Gerry Rowse
- Daya Siddappa

#### **Research Leadership**

- Paul Moore
- Jamie Rich
- · Stuart Barnscher

#### **Project Management**

Kari Frantzen

#### **Intellectual Property**

· Emma Macfarlane

#### **Alliance Management**

· Lucas Donigian

#### **Business Development:**

- Steve Seredick
- · Lisa Mullee