Novel IgG1 Cysteine Insertion Sites Enable Site-Specific Conjugation and Precise Control of Drug to Antibody Ratio

Abstract number 116

Samir Das, Mario Sanches, Patrick Farber, Jodi Wong, Andrea Hernandez, Tong Ding, Diego Alonzo, Vincent Fung, Katina Mak, Laurence Madera, David Plotnik, Graham Garnett, Sam Lawn, Stuart Barnscher, Jamie Rich Author affiliations: Zymeworks Inc., Vancouver, BC, Canada

Introduction

Background

- Engineering antibodies to include cysteine residue insertions allow for site-specific (SS) conjugation to thiol reactive small molecules to generate antibody drug conjugates (ADCs).¹
- The insertion of cysteine residues into an antibody can impact important properties, such as structure, function, and expression.
- Important ADC properties including deconjugation rate, susceptibility to payload metabolism and overall hydrophobicity can be impacted by the location of the inserted cysteine residue.
- The Azymetric[™] technology permits heterodimeric Fc pairing and asymmetric combination of one or more cysteine insertion sites.

Approach

Binding is Unaffected by Cys Insertion

Robust Conjugation Protocol Affords Site-Specific ADCs

Conjugation Protocol

tinker-payload: ZymeLink[™] Auristatin / MC-VC-PABC-MMAE

Azymetric[™] Platform Enables Precise Control of Drug to **Antibody Ratio**

- DAR-tuned ADCs from DAR 1 to DAR 6 were produced by combining Cys insertion sites with Azymetric[™] technology
- No adverse effects on antibody properties were observed from the incorporation of multiple Cys insertion sites
- SS ADCs generated from Cys insertion demonstrated favorable biophysical properties compared to similar ADCs prepared using stochastic conjugation methods

Cys Insertion Sites Considered

Black: Cys insertion sites evaluated in silico *Red* + *Orange*: *Cys insertion antibodies expressed and evaluated as ADCs* **Orange:** preferred Cys insertion sites identified

*Benchmark engineered antibodies from MedImmune¹ (C239i or S239.5, cysteine insertion between S239 and V240) and Genentech (Thiomab[™] HC_A114C,² HC_S239C,³ LC_K149C⁴) were also evaluated

[#]Engineered cysteines are typically in oxidized form, capped with GSH or L-Cys

Biophysical and In Vitro Characterization Workflow

Analytical Method	Properties Assessed
Hydrophobic Interaction Chromatography (HIC)	Relative hydrophobicity
Size Exclusion Chromatography (SEC)	 Mono-dispersity: % monomer, %HMWS, %LMWS
Mass Spectrometry	 Drug to antibody ratio (DAR) Site of conjugation (i.e. light chain or heavy chain)
Capillary Electrophoresis Sodium Dodecyl Sulfate (CE-SDS)	Molecular integrityIntact disulfide bonding of interchain cysteines
On-cell Binding by Flow Cytometry	Target binding of native antigen by antibody or ADC
In Vitro Cytotoxicity	Potency of ADC

Cys Insertion Location Determines Overall Hydrophobicity of the ADC

- The conjugation of linker-payloads to an antibody leads to an increase in hydrophobicity (measured by HIC) as compared to the native antibody. It has been established that ADCs with high hydrophobicity are cleared more rapidly in vivo.
- To mitigate the effects of linker-payload conjugation on ADC hydrophobicity, we identified Cys insertion sites that mask the hydrophobicity of the linker-payload
- Below, the HIC relative retention time (RRT = RT_{DAR2}/RT_{DAR0}) of Cys insertion ADCs is compared to benchmark site-specific ADCs

Relative Hydrophobicity of Cys Insertion Site-specific ADCs

Higher DAR correlates with better preclinical activity for DAR 1-3 SS ADCs

In Vitro Potency Correlates with DAR of SS ADCs (DAR 1-3)

Note: DAR 4 Stochastic ADC prepared by interchain cysteine conjugation method.

SS ADCs Demonstrate Anti-tumor Activity and Antibody-like PK

In silico Approach Predicts Positions in Loop Regions **Amenable to Cysteine Insertion**

• A combination of semi-rational and model-driven in silico approaches led to the selection of 32 Cys insertion designs for expression, conjugation and characterization as ADCs

DAR 2 Cys Insertion SS ADCs Demonstrate Equivalent In Vitro Activity

Days post dose Time (days) → Vehicle Wildtype Ab ✤ Cys Insertion Ab - DAR 4 Stochastic ZLA ADC 1 mg/kg - DAR 2 Stochastic ZLA ADC 2 mg/kg SS ADC → DAR 3 SS ZLA ADC 1.3 mg/kg DAR 2 SS ZLA ADC 2 mg/kg → DAR 1 SS ZLA ADC 4 mg/kg

DAR 4 Stochastic ZLA ADC prepared by interchain cysteine conjugation method DAR 2 Stochastic ZLA ADC prepared by lysine conjugation method DAR 3 SS ZLA ADC made with Cys insertions at HC_{A} (G237.5, T299.5) and HC_{B} (T299.5) DAR 2 SS ZLA ADC made with Cys insertions at $HC_A(T299.5)$ and $HC_B(T299.5)$ DAR 1 SS ZLA ADC made with Cys insertion at $HC_{A}(T299.5)$

Combination of Cys Insertion Designs Permits the Assessment of DAR 4 and DAR 6 SS ADCs

Note: DAR 4 Stochastic ADC prepared by interchain cysteine conjugation method

Cys Insertion in CH2 Domain Near Hinge Perturbs **Antibody Effector Function**

• Cys insertion at HC_G237.5 and HC_T299.5 completely abolishes FcyR binding

SS ADCs Derived from Cys Insertion Designs Offer a **Range of Linker-payload Deconjugation Rates**

• ADCs produced by cysteine conjugation using thiol-maleimide chemistry can

Conclusions

• A combined in-silico and in vitro screening strategy was developed to identify

- Cys insertion at HC_Q295.5 leads to 3-fold reduction in FcyR binding affinity
- None of the Cys insertion sites evaluated impact FcRn binding

- undergo deconjugation via a retro-Michael reaction
- The site of linker-payload attachment influences the rate of retro-Michael deconjugation

- novel Cys insertion sites for the generation of site-specific ADCs
- Cys insertion sites are compatible across different IgG1 antibodies
- A repertoire of insertion sites feature a range of $Fc\gamma R$ binding affinities and varying degrees of protection against linker-payload deconjugation
- The Azymetric[™] platform enabled the combination of multiple Cys insertion sites to produce site specific ADCs up to DAR 6
- Site specific ADCs generated from Cys insertion have favorable biophysical properties, are active in vivo and display pharmacokinetic profiles similar to wildtype antibodies

References

- 1. Dimasi et. al., *Molecular Pharmaceutics* **2017**, *14*, 1501-1516
- 2. Junutula et. al., *Nature Biotechnology* **2008**, *26*, 925-932
- 3. Thompson et. al., Journal of Controlled Release 2016, 236, 100-116
- 4. Su et. al., Bioconjugate Chemistry 2018, 29, 1155-1167

Acknowledgement

SD thanks team members, ex-colleagues of ADC Therapeutic Development, and shareholders of Zymeworks Inc.

> Antibody Engineering and Therapeutics San Diego, CA I December 4 - 8, 2022

